|
| std::function< Eigen::Vector3d(double t, const Eigen::Vector3d &)> | star (const std::function< Eigen::Vector3d(double t, const Eigen::Vector3d &)> &F) |
| |
| std::function< Eigen::Vector3d(const Eigen::Vector3d &)> | star (const std::function< Eigen::Vector3d(const Eigen::Vector3d &)> &F) |
| |
| template<typename Fct > |
| std::vector< Fct > | starCol (const std::vector< Fct > &F) |
| |
| std::function< Eigen::Vector3d(const Eigen::Vector3d &)> | noise (const std::function< Eigen::Vector3d(const Eigen::Vector3d &)> &f) |
| |
| template<typename outValue , typename Fct > |
| std::vector< Fct > | sumLA (const std::vector< Fct > &LAF, const std::vector< Fct > &LAG, double lambda) |
| | Template to evaluate a vector of functions.
|
| |
| double | scalar_product (const double &x, const double &y) |
| | Scalar product between two reals.
|
| |
| double | scalar_product (const double &x, const Eigen::Matrix< double, 1, 1 > &y) |
| | Scalar product between one real and one 1-dimension Eigen vector.
|
| |
| double | scalar_product (const VectorRd &x, const VectorRd &y) |
| | Scalar product between two vectors.
|
| |
| boost::multi_array< VectorRd, 2 > | vector_product (const boost::multi_array< VectorRd, 2 > &basis_quad, const VectorRd &v) |
| | Compute the vector (cross) product between the evaluation of a basis and a constant vector.
|
| |
| Eigen::MatrixXd | PermuteTensorization (const size_t a, const size_t b) |
| | Returns the matrix giving the permutation of the tensorization of a family of size a with a family of size b.
|
| |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< VectorRd, 2 > &B1, const boost::multi_array< double, 2 > &B2, const QuadratureRule &qr) |
| | Compute the Gram-like matrix given a family of vector-valued and one of scalar-valued functions by tensorizing the latter.
|
| |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< double, 2 > &B1, const boost::multi_array< double, 2 > &B2, const QuadratureRule &qr, const size_t nrows, const size_t ncols, const std::string sym) |
| |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< double, 2 > &B1, const boost::multi_array< double, 2 > &B2, const QuadratureRule &qr, const std::string sym) |
| |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< VectorRd, 2 > &B1, const boost::multi_array< VectorRd, 2 > &B2, const QuadratureRule &qr, const size_t nrows, const size_t ncols, const std::string sym) |
| |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< VectorRd, 2 > &B1, const boost::multi_array< VectorRd, 2 > &B2, const QuadratureRule &qr, const std::string sym="nonsym") |
| | Compute the Gram-like matrix given the evaluation of two families of functions at quadrature nodes. Consists in calling the Vector3d-valued version with nrows = nb of elements in B1, ncols = nb of elements in B2.
|
| |
| Eigen::MatrixXd | compute_weighted_gram_matrix (const FType< VectorRd > &f, const BasisQuad< VectorRd > &B1, const BasisQuad< double > &B2, const QuadratureRule &qr, size_t n_rows=0, size_t n_cols=0) |
| | Computes the Gram-like matrix of integrals (f dot phi_i, phi_j)
|
| |
| Eigen::MatrixXd | compute_weighted_gram_matrix (const FType< VectorRd > &f, const BasisQuad< double > &B1, const BasisQuad< VectorRd > &B2, const QuadratureRule &qr, size_t n_rows=0, size_t n_cols=0) |
| | Computes the Gram-like matrix of integrals (phi_i, f dot phi_j)
|
| |
| template<typename ScalarFamilyType > |
| DivergenceBasis< TangentFamily< ScalarFamilyType > > | ScalarRotFamily (const TangentFamily< ScalarFamilyType > &tangent_family, const Face &F) |
| | The following function creates the "scalar rot" basis of a TangentFamily on a face.
|
| |
| template<typename outValue , typename inValue , typename FunctionType > |
| boost::multi_array< outValue, 2 > | transform_values_quad (const boost::multi_array< inValue, 2 > &B_quad, const FunctionType &F) |
| | Takes an array B_quad of values at quadrature nodes and applies the function F to all of them. F must take inValue and return outValue. The function must be called with outValue as template argument: transform_values_quad<outValue>(...)
|
| |
| template<typename ScalarBasisType , size_t N> |
| Family< TensorizedVectorFamily< ScalarBasisType, N > > | GenericTensorization (const ScalarBasisType &B, const std::vector< Eigen::VectorXd > &v) |
| | From a scalar family B=(B_1..B_r) and vectors (v_1..v_k) in R^N, constructs a "Family" of "TensorizedVectorFamily" (built on B, of size N) that represents the family (B_1v_1..B_rv_1 B_1v_2...B_rv_2...B_1v_k...B_rv_k).
|
| |
| template<typename ScalarBasisType , size_t N> |
| Family< MatrixFamily< ScalarBasisType, N > > | IsotropicMatrixFamily (const ScalarBasisType &B) |
| | From a scalar family B, constructs a "Family" of "MatrixFamily" (built on B, of size NxN) that represents the family B Id on the MatrixFamily.
|
| |
| template<typename T > |
| Eigen::MatrixXd | gram_schmidt (boost::multi_array< T, 2 > &basis_eval, const std::function< double(size_t, size_t)> &inner_product) |
| |
| template<int N> |
| double | scalar_product (const Eigen::Matrix< double, N, N > &x, const Eigen::Matrix< double, N, N > &y) |
| | Scalar product between two matrices.
|
| |
| template<typename Value > |
| boost::multi_array< double, 2 > | scalar_product (const boost::multi_array< Value, 2 > &basis_quad, const Value &v) |
| | This overloading of the scalar_product function computes the scalar product between an evaluation of a basis and a constant value; both basis values and constant value must be of type Value.
|
| |
| template<typename BasisType > |
| Family< BasisType > | l2_orthonormalize (const BasisType &basis, const QuadratureRule &qr, boost::multi_array< typename BasisType::FunctionValue, 2 > &basis_quad) |
| | \(L^2\)-orthonormalization: simply consists in using gram_schmidt() with the specific l2 inner product
|
| |
| template<typename BasisType > |
| Family< BasisType > | l2_orthonormalize (const BasisType &basis, const Eigen::MatrixXd &GM) |
| | \(L^2\)-orthonormalization: when the Gram Matrix is passed, we use Cholesky.
|
| |
| template<typename FunctionValue > |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< FunctionValue, 2 > &B1, const boost::multi_array< FunctionValue, 2 > &B2, const QuadratureRule &qr, const size_t nrows, const size_t ncols, const std::string sym="nonsym") |
| |
| template<typename FunctionValue > |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< FunctionValue, 2 > &B1, const boost::multi_array< FunctionValue, 2 > &B2, const QuadratureRule &qr, const std::string sym="nonsym") |
| |
| template<typename FunctionValue > |
| Eigen::MatrixXd | compute_gram_matrix (const boost::multi_array< FunctionValue, 2 > &B, const QuadratureRule &qr) |
| | Compute the Gram matrix given the evaluation of one family of functions at quadrature nodes. Consists in calling the generic templated version with B1=B2.
|
| |
| template<typename ScalarFamilyType , size_t N> |
| Eigen::MatrixXd | compute_gram_matrix (const MatrixFamily< ScalarFamilyType, N > &MatFam, const boost::multi_array< double, 2 > &scalar_family_quad, const QuadratureRule &qr) |
| | Compute the Gram-like matrix for a MatrixFamily. This overload is more efficient than the generic function as it only computes the gram matrix of the underlying scalar family, and then creates the bloc-diagonal gram matrix of the MatrixFamily (which is indeed bloc diagonal given the choice of m_E elements in this class).
|
| |
| template<typename T > |
| Eigen::VectorXd | integrate (const FType< T > &f, const BasisQuad< T > &B, const QuadratureRule &qr, size_t n_rows=0) |
| | Computes the vector of integrals (f, phi_i)
|
| |
| template<typename T , typename U > |
| Eigen::MatrixXd | compute_weighted_gram_matrix (const FType< U > &f, const BasisQuad< T > &B1, const BasisQuad< T > &B2, const QuadratureRule &qr, size_t n_rows=0, size_t n_cols=0, const std::string sym="nonsym") |
| | Computes the Gram-like matrix of integrals (f phi_i, phi_j)
|
| |
| template<typename T , typename U > |
| Eigen::MatrixXd | compute_weighted_gram_matrix (const FType< U > &f, const BasisQuad< T > &B1, const BasisQuad< T > &B2, const QuadratureRule &qr, const std::string sym) |
| | Computes the Gram-like matrix of integrals (f phi_i, phi_j)
|
| |
| template<typename BasisType > |
| Eigen::VectorXd | l2_projection (const std::function< typename BasisType::FunctionValue(const VectorRd &)> &f, const BasisType &basis, QuadratureRule &quad, const boost::multi_array< typename BasisType::FunctionValue, 2 > &basis_quad, const Eigen::MatrixXd &mass_basis=Eigen::MatrixXd::Zero(1, 1)) |
| | Compute the L2-projection of a function.
|
| |
| std::pair< double, double > | store_times (boost::timer::cpu_timer &timer, std::string message="") |
| | Function to store and display wall/proc timers from boost::timer::cpu_timer.
|
| |
| IntegralWeight | operator* (double const &r, IntegralWeight const &weight) |
| | Operator to multiply an IntegralWeight by a number.
|
| |
| IntegralWeight | operator+ (IntegralWeight const &weight1, IntegralWeight const &weight2) |
| | Operator to add an IntegralWeight to another one.
|
| |
| static std::pair< std::vector< int >, std::vector< int > > | distributeLoad (size_t nb_elements, unsigned nb_threads) |
| | Function to distribute elements (considered as jobs) over threads. It returns a pair of vectors indicating the start and end element of each thread.
|
| |
| static void | parallel_for (unsigned nb_elements, std::function< void(size_t start, size_t end)> functor, bool use_threads=true) |
| | Generic function to execute threaded processes.
|
| |
| static SystemVectors< Eigen::SparseMatrix< double > > | parallel_assembly_system (size_t nb_elements, std::vector< std::pair< size_t, size_t > > size_systems, std::vector< size_t > size_vectors, std::function< void(size_t start, size_t end, std::vector< std::list< Eigen::Triplet< double > > > *triplets, std::vector< Eigen::VectorXd > *vecs)> batch_local_assembly, bool use_threads=true) |
| | Function to assemble global matrices from a procedure that compute local triplets.
|
| |
| static std::pair< Eigen::SparseMatrix< double >, Eigen::VectorXd > | parallel_assembly_system (size_t nb_elements, size_t size_system, std::function< void(size_t start, size_t end, std::list< Eigen::Triplet< double > > *triplets, Eigen::VectorXd *rhs)> batch_local_assembly, bool use_threads=true) |
| | Function to assemble a global matrix and right-hand side from a procedure that compute local triplets and rhs contributions (a wrapper for the more general function that can assemble several matrices and vectors)
|
| |
| static std::tuple< Eigen::SparseMatrix< double >, Eigen::VectorXd, Eigen::SparseMatrix< double >, Eigen::VectorXd > | parallel_assembly_system (size_t nb_elements, size_t size_system1, std::pair< size_t, size_t > size_Mat2, size_t size_b2, std::function< void(size_t start, size_t end, std::list< Eigen::Triplet< double > > *triplets1, Eigen::VectorXd *vec1, std::list< Eigen::Triplet< double > > *triplets2, Eigen::VectorXd *vec2)> batch_local_assembly, bool use_threads=true) |
| | Function to assemble two global matrices and vectors (such as: system and static condensation operator, or system and matrix for BC) from a procedure that compute local triplets and rhs contributions (a wrapper for the more general function that can assemble several matrices and vectors)
|
| |
| template<typename GeometricSupport > |
| size_t const | DimPoly (int m) |
| |
| template<> |
| const size_t | DimPoly< Cell > (const int m) |
| | Compute the size of the basis of 3-variate polynomials up to degree m.
|
| |
| template<> |
| const size_t | DimPoly< Face > (const int m) |
| | Compute the size of the basis of 2-variate polynomials up to degree m.
|
| |
| template<> |
| const size_t | DimPoly< Edge > (const int m) |
| | Compute the size of the basis of 1-variate polynomials up to degree m.
|
| |
| std::vector< MonomialCellIntegralsType > | IntegrateCellMonomials_onEdges (const Cell &T, const size_t maxdeg) |
| | Compute all the integrals, on the edges of a cell, of this cell's monomials up to a max degree.
|
| |
| std::vector< MonomialCellIntegralsType > | IntegrateCellMonomials_onFaces (const Cell &T, const size_t maxdeg, std::vector< MonomialCellIntegralsType > &integrals_edges) |
| | Compute all the integrals, on the faces of a cell, of this cell's monomials up to a max degree.
|
| |
| MonomialCellIntegralsType | IntegrateCellMonomials (const Cell &T, const int maxdeg) |
| | Compute all the integrals of a cell's monomials on the cell.
|
| |
| MonomialCellIntegralsType | CheckIntegralsDegree (const Cell &T, const size_t degree, const MonomialCellIntegralsType &mono_int_map={}) |
| | Checks if the degree of an existing list of monomial integrals is sufficient, other re-compute and return a proper list.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | transformGM (const Family< BasisType > &family_basis, const char RC, const Eigen::MatrixXd &anc_GM) |
| | Transforms a Gram Matrix from an ancestor to a family basis.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | transformGM (const RestrictedBasis< BasisType > &restr_basis, const char RC, const Eigen::MatrixXd &anc_GM) |
| | Transforms a Gram Matrix from an ancestor to a restricted basis.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | transformGM (const ShiftedBasis< BasisType > &shifted_basis, const char RC, const Eigen::MatrixXd &anc_GM) |
| | Transforms a Gram Matrix from an ancestor to a shifted basis.
|
| |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const MonomialScalarBasisCell &basis1, const MonomialScalarBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const BasisType &basis, MonomialCellIntegralsType mono_int_map={}) |
| | This overload to simplify the call to GramMatrix in case the two bases are the same.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of any pair of tensorized scalar bases.
|
| |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const RolyComplBasisCell &basis1, const RolyComplBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of RolyCompl bases.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const RolyComplBasisCell &rolycompl_basis, const TensorizedVectorFamily< BasisType1, N > &tens_family, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a RolyCompl basis and a tensorized scalar basis.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &tens_family, const RolyComplBasisCell &rolycompl_basis, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a tensorized scalar basis and a RolyCompl basis.
|
| |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const GolyComplBasisCell &basis1, const GolyComplBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of GolyCompl bases.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const GolyComplBasisCell &golycompl_basis, const TensorizedVectorFamily< BasisType1, N > &tens_family, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a GolyCompl basis and a tensorized scalar basis.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &tens_family, const GolyComplBasisCell &golycompl_basis, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a tensorized scalar basis and a GolyCompl basis.
|
| |
| Eigen::MatrixXd | GMRolyComplScalar (const Cell &T, const RolyComplBasisCell &rolycompl_basis, const MonomialScalarBasisCell &mono_basis, const size_t m, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of the mth component of a RolyCompl Basis and a monomial basis.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GMRolyComplScalar (const Cell &T, const RolyComplBasisCell &basis1, const BasisType &basis2, const size_t m, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of the mth component of a RolyCompl Basis and any basis.
|
| |
| Eigen::MatrixXd | GMGolyComplScalar (const Cell &T, const GolyComplBasisCell &golycompl_basis, const MonomialScalarBasisCell &mono_basis, const size_t s, MonomialCellIntegralsType mono_int_map, const size_t m=3, const size_t k1=3, const size_t k2=3) |
| | Computes the Gram Matrix of the sth section of a GolyCompl Basis and a monomial basis.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GMGolyComplScalar (const Cell &T, const GolyComplBasisCell &basis1, const BasisType &basis2, const size_t s, MonomialCellIntegralsType mono_int_map, const size_t m=3, const size_t k1=3, const size_t k2=3) |
| | Generic template to compute the Gram Matrix of the sth section of a GolyCompl Basis and any basis with an extra power of the mth variable.
|
| |
| Eigen::MatrixXd | GMGolyCompl (const Cell &T, const GolyComplBasisCell &basis1, const GolyComplBasisCell &basis2, const size_t s1, const size_t s2, MonomialCellIntegralsType mono_int_map, const size_t m1=3, const size_t m2=3, const size_t k1=3, const size_t k2=3) |
| | Computes the Gram Matrix of the (optionally k1th derivative of the) s1th section of GolyCompl (optionally multiplied by the m1th variable) and the (optionally k2th derivative of the) s2th section of GolyCompl (optionally multiplied by the m2th variable)
|
| |
| template<typename BasisType > |
| constexpr bool | useAncestor () |
| | Determines if the ancestor of a basis will be used to compute a Gram matrix for this basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of bases.
|
| |
| Eigen::MatrixXd | GMScalarDerivative (const Cell &T, const MonomialScalarBasisCell &basis1, const MonomialScalarBasisCell &basis2, const size_t m, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases, taking a partial derivative of the first (w.r.t. homogeneous coordinates, without scaling)
|
| |
| Eigen::MatrixXd | GMScalarDerivative (const Cell &T, const MonomialScalarBasisCell &basis1, const MonomialScalarBasisCell &basis2, const size_t m, const size_t l, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases, taking partial derivatives of each of them (w.r.t. homogeneous coordinates, without scaling)
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GMScalarDerivative (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, const size_t m, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of scalar bases, taking a partial derivative of the first (w.r.t. homogeneous coordinates, without scaling)
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GMScalarDerivative (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, const size_t m, const size_t l, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of scalar bases, taking partial derivatives of each of them (w.r.t. homogeneous coordinates, without scaling)
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const GradientBasis< BasisType1 > &grad_basis, const TensorizedVectorFamily< BasisType2, N > &tens_family, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a gradient basis and a tensorized scalar basis.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &tens_family, const GradientBasis< BasisType2 > &grad_basis, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a tensorized scalar basis and a gradient basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const GradientBasis< BasisType1 > &grad_basis1, const GradientBasis< BasisType2 > &grad_basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a gradient basis and another gradient basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const CurlBasis< BasisType1 > &basis1, const CurlBasis< BasisType2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of Curl of any pair of bases.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| boost::disable_if< boost::is_same< BasisType2, MonomialCellIntegralsType >, Eigen::MatrixXd >::type | GramMatrix (const Cell &T, const CurlBasis< BasisType1 > &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a Curl basis and any other basis.
|
| |
| template<typename BasisType1 , typename Basis2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const BasisType1 &basis1, const CurlBasis< Basis2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of any basis and a Curl basis.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrixCurlCurl (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the curl of a tensorized basis and the curl of another tensorized basis.
|
| |
| Eigen::MatrixXd | GramMatrixCurlCurl (const Cell &T, const GolyComplBasisCell &basis1, const GolyComplBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Compute the Gram Matrix of the curl of a GolyCompl basis and the curl of another GolyCompl basis.
|
| |
| template<typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrixCurlCurl (const Cell &T, const GolyComplBasisCell &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the curl of a GolyCompl basis and the curl of a tensorized basis.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrixCurlCurl (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const GolyComplBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the curl of a tensorized basis and the curl of a GolyCompl basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixCurlCurl (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the curl of any basis and the curl of any other basis.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrixCurl (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a Curl<Tensorized> basis and a tensorized scalar basis.
|
| |
| template<typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrixCurl (const Cell &T, const GolyComplBasisCell &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a Curl<GolyCompl> basis and a tensorized scalar basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixCurl (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the curl of any basis and any other basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixCurl (const Cell &T, const BasisType1 &basis1, const CurlBasis< BasisType2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the curl of any two bases when one CurlBasis is at a lower level than the other.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const DivergenceBasis< BasisType1 > &basis1, const DivergenceBasis< BasisType2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of Divergence of any pair of bases.
|
| |
| Eigen::MatrixXd | GMRolyComplScalarDiv (const Cell &T, const MonomialScalarBasisCell &mono_basis, const RolyComplBasisCell &rolycompl_basis, const size_t k, MonomialCellIntegralsType mono_int_map) |
| | Gram Matrix of the divergence of a RolyCompl Basis and the kth derivative of a monomial basis.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GMRolyComplScalarDiv (const Cell &T, const BasisType &basis1, const RolyComplBasisCell &basis2, const size_t k, MonomialCellIntegralsType mono_int_map) |
| | Gram Matrix of the divergence of a RolyCompl basis and the k-th derivative of any scalar basis.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrixDivDiv (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of a tensorized basis and the divergence of another tensorized basis.
|
| |
| Eigen::MatrixXd | GramMatrixDivDiv (const Cell &T, const RolyComplBasisCell &basis1, const RolyComplBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Compute the Gram Matrix of the divergence of a RolyCompl basis and the divergence of another RolyCompl basis.
|
| |
| template<typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrixDivDiv (const Cell &T, const RolyComplBasisCell &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of a RolyCompl basis and the divergence of a tensorized basis.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrixDivDiv (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const RolyComplBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of a tensorized basis and the divergence of a RolyCompl basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixDivDiv (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of any basis and the divergence of any other basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| boost::disable_if< boost::is_same< BasisType2, MonomialCellIntegralsType >, Eigen::MatrixXd >::type | GramMatrix (const Cell &T, const DivergenceBasis< BasisType1 > &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a Divergence basis and any other basis.
|
| |
| template<typename BasisType1 , typename Basis2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const BasisType1 &basis1, const DivergenceBasis< Basis2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of any basis and a Divergence basis.
|
| |
| template<typename BasisType1 , size_t N> |
| Eigen::MatrixXd | GramMatrixDiv (const Cell &T, const TensorizedVectorFamily< BasisType1, N > &basis1, const MonomialScalarBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a Divergence<Tensorized> basis and a monomial scalar basis.
|
| |
| Eigen::MatrixXd | GramMatrixDiv (const Cell &T, const RolyComplBasisCell &basis1, const MonomialScalarBasisCell &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a Divergence<RolyCompl> basis and a monomial scalar basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixDiv (const Cell &T, const BasisType1 &basis1, const BasisType2 &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of any basis and any other basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixDiv (const Cell &T, const BasisType1 &basis1, const DivergenceBasis< BasisType2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of any two bases when one DivergenceBasis is at a lower level than the other.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const MatrixFamily< BasisType1, N > &basis1, const MatrixFamily< BasisType2, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Gram Matrix of any pair of MatrixFamily bases.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const DivergenceBasis< MatrixFamily< BasisType1, dimspace > > &basis1, const TensorizedVectorFamily< BasisType2, dimspace > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Gram Matrix of the divergence of a MatrixFamily and a tensorized family (only valid if, in MatrixFamily and TensorizedVectorFamily, we have N=dimspace).
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const TensorizedVectorFamily< BasisType1, dimspace > &basis1, const DivergenceBasis< MatrixFamily< BasisType2, dimspace > > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a vector valued basis and the divergence of a MatrixFamily.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const GradientBasis< TensorizedVectorFamily< BasisType1, dimspace > > &basis1, const MatrixFamily< BasisType2, dimspace > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Gram Matrix of the gradient basis of a tensorized family and a matrix family (only valid if N=dimspace in Tensorized and MatrixFamily).
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const MatrixFamily< BasisType1, dimspace > &basis1, const GradientBasis< TensorizedVectorFamily< BasisType2, dimspace > > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Gram Matrix of a Matrix family and the gradient of a tensorized family.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Cell &T, const GradientBasis< TensorizedVectorFamily< BasisType1, N > > &basis1, const GradientBasis< TensorizedVectorFamily< BasisType2, N > > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Gram Matrix of two gradient bases of tensorized families.
|
| |
| MonomialEdgeIntegralsType | IntegrateEdgeMonomials (const Edge &E, const int maxdeg) |
| | Compute all integrals of edge monomials up to a total degree.
|
| |
| MonomialEdgeIntegralsType | CheckIntegralsDegree (const Edge &E, const size_t degree, const MonomialEdgeIntegralsType &mono_int_map={}) |
| | Checks if the degree of an existing list of monomial integrals is sufficient, other re-compute and return a proper list.
|
| |
| Eigen::MatrixXd | GramMatrix (const Edge &E, const MonomialScalarBasisEdge &basis1, const MonomialScalarBasisEdge &basis2, MonomialEdgeIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Edge &E, const BasisType1 &basis1, const BasisType2 &basis2, MonomialEdgeIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of bases.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GramMatrix (const Edge &E, const BasisType &basis, MonomialEdgeIntegralsType mono_int_map={}) |
| | This overload to simplify the call to GramMatrix in case the two bases are the same.
|
| |
| Eigen::MatrixXd | GMDer (const Edge &E, const MonomialScalarBasisEdge &basis1, const MonomialScalarBasisEdge &basis2, MonomialEdgeIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of the derivative of a monomial basis with another monomial basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GMDer (const Edge &E, const BasisType1 &basis1, const BasisType2 &basis2, MonomialEdgeIntegralsType mono_int_map={}) |
| | Generic template for GMDer with derived bases.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Edge &E, const GradientBasis< BasisType1 > &basis1, const BasisType2 &basis2, MonomialEdgeIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a gradient basis (considering the tangential gradient as a scalar) and a scalar basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Edge &E, const BasisType1 &basis1, const GradientBasis< BasisType2 > &basis2, MonomialEdgeIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a scalar basis and a gradient basis (considering the tangential gradient as a scalar)
|
| |
| std::vector< MonomialFaceIntegralsType > | IntegrateFaceMonomials_onEdges (const Face &F, const size_t maxdeg) |
| | Compute all integrals, on the edges of a face, of the face monomials up to a total degree.
|
| |
| MonomialFaceIntegralsType | IntegrateFaceMonomials (const Face &F, const int maxdeg) |
| | Compute all integrals on a face of face monomials up to a total degree.
|
| |
| MonomialFaceIntegralsType | CheckIntegralsDegree (const Face &F, const size_t degree, const MonomialFaceIntegralsType &mono_int_map={}) |
| | Checks if the degree of an existing list of monomial integrals is sufficient, other re-compute and return a proper list.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const BasisType1 &basis1, const BasisType2 &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of bases.
|
| |
| Eigen::MatrixXd | GramMatrix (const Face &F, const MonomialScalarBasisFace &basis1, const MonomialScalarBasisFace &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const BasisType &basis, MonomialFaceIntegralsType mono_int_map={}) |
| | This overload to simplify the call to GramMatrix in case the two bases are the same.
|
| |
| template<typename BasisType1 , typename BasisType2 , size_t N> |
| Eigen::MatrixXd | GramMatrix (const Face &F, const TensorizedVectorFamily< BasisType1, N > &basis1, const TensorizedVectorFamily< BasisType2, N > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of any pair of tensorized scalar bases.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const TangentFamily< BasisType1 > &basis1, const TangentFamily< BasisType2 > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of tangent bases.
|
| |
| Eigen::MatrixXd | GramMatrix (const Face &F, const RolyComplBasisFace &basis1, const RolyComplBasisFace &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of RolyCompl bases.
|
| |
| Eigen::MatrixXd | GramMatrix (const Face &F, const GolyComplBasisFace &basis1, const GolyComplBasisFace &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of GolyCompl bases.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const RolyComplBasisFace &basis1, const TangentFamily< BasisType > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a RolyCompl basis and a tangent basis.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const TangentFamily< BasisType > &basis1, const RolyComplBasisFace &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a RolyCompl basis and a tangent basis.
|
| |
| Eigen::MatrixXd | GMRolyComplScalar (const Face &F, const RolyComplBasisFace &rolycompl_basis, const MonomialScalarBasisFace &mono_basis, const size_t m, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of the scalar part of a RolyCompl Basis and a monomial basis with an extra power on the mth variable.
|
| |
| template<typename BasisType > |
| Eigen::MatrixXd | GMRolyComplScalar (const Face &F, const RolyComplBasisFace &basis1, const BasisType &basis2, const size_t m, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of the scalar part of a RolyCompl Basis and any basis with an extra power on the mth variable.
|
| |
| Eigen::MatrixXd | GMScalarDerivative (const Face &F, const MonomialScalarBasisFace &basis1, const MonomialScalarBasisFace &basis2, const size_t m, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases, taking a partial derivative of the first (w.r.t. homogeneous coordinates on the face, no change of variable)
|
| |
| Eigen::MatrixXd | GMScalarDerivative (const Face &F, const MonomialScalarBasisFace &basis1, const MonomialScalarBasisFace &basis2, const size_t m, const size_t l, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a pair of local scalar monomial bases, taking a partial derivative of each (w.r.t. homogeneous coordinates on the face, no change of variable)
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GMScalarDerivative (const Face &F, const BasisType1 &basis1, const BasisType2 &basis2, const size_t m, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of scalar bases, taking a partial derivative of the first (w.r.t. homogeneous coordinates on the face, no change of variable)
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GMScalarDerivative (const Face &F, const BasisType1 &basis1, const BasisType2 &basis2, const size_t m, const size_t l, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of any pair of scalar bases, taking a partial derivative of each (w.r.t. homogeneous coordinates on the face, no change of variable)
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const CurlBasis< BasisType1 > &basis1, const CurlBasis< BasisType2 > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a pair of Curl bases.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const CurlBasis< BasisType1 > &basis1, const TangentFamily< BasisType2 > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a Curl basis and a Tangent basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const TangentFamily< BasisType1 > &basis1, const CurlBasis< BasisType2 > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a Tangent basis and a Curl basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| boost::disable_if< boost::is_same< BasisType2, MonomialFaceIntegralsType >, Eigen::MatrixXd >::type | GramMatrix (const Face &F, const DivergenceBasis< BasisType1 > &basis1, const BasisType2 &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Generic template to compute the Gram Matrix of a Divergence basis and any other basis.
|
| |
| template<typename BasisType1 , typename Basis2 > |
| Eigen::MatrixXd | GramMatrix (const Face &F, const BasisType1 &basis1, const DivergenceBasis< Basis2 > &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of any basis and a Divergence basis.
|
| |
| template<typename BasisType1 > |
| Eigen::MatrixXd | GramMatrixDiv (const Face &F, const TangentFamily< BasisType1 > &basis1, const MonomialScalarBasisFace &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of a Divergence<TangentFamily> basis and a monomial scalar basis.
|
| |
| Eigen::MatrixXd | GramMatrixDiv (const Face &F, const RolyComplBasisFace &basis1, const MonomialScalarBasisFace &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Computes the Gram Matrix of a Divergence<RolyCompl> basis and a monomial scalar basis.
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Eigen::MatrixXd | GramMatrixDiv (const Face &F, const BasisType1 &basis1, const BasisType2 &basis2, MonomialFaceIntegralsType mono_int_map={}) |
| | Template to compute the Gram Matrix of the divergence of any basis and any other basis.
|
| |
| MatrixSlice | slice (Scalar3Tensor &tensor, size_t fixed_dim, size_t index) |
| | Function to slice a 3-tensor with respect to one index (returns a 2-tensor)
|
| |
| VectorSlice | slice (Scalar3Tensor &tensor, size_t fixed_dim1, size_t index1, size_t fixed_dim2, size_t index2) |
| | Function to slice a 3-tensor with respect to two indices (returns a 1-tensor)
|
| |
| template<size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const MonomialScalarBasisCell &basis1, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the triple integral product of a scalar times the dot product of two vectors - basis1(basis2 . basis2).
|
| |
| template<size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &tens_family1, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &tens_family2, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the triple integral product of a vector basis dot the cross product of the second vector basis - tens_family1 . (tens_family2 x tens_family2).
|
| |
| template<size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const GradientBasis< MonomialScalarBasisCell > &grad_basis, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &tens_family, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the triple integral product of a vector basis dot the cross product of the second vector basis - grad_basis . (tens_family x tens_family).
|
| |
| template<size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const GolyComplBasisCell &golycompl_basis, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &tens_family, MonomialCellIntegralsType mono_int_map={}) |
| | Computes the triple integral product of a vector basis dot the cross product of the second vector basis - golycompl_basis . (tens_family x tens_family).
|
| |
| template<typename ScalarBasisType1 , typename ScalarBasisType2 , size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const GradientBasis< ShiftedBasis< ScalarBasisType1 > > &grad_shift_basis, const TensorizedVectorFamily< Family< ScalarBasisType2 >, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| template<typename ScalarBasisType , typename BasisType > |
| Scalar3Tensor | tripleInt (const Cell &T, const GradientBasis< ShiftedBasis< ScalarBasisType > > &grad_shift_basis, const BasisType &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| template<typename BasisType , typename ScalarBasisType , size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const BasisType &basis1, const TensorizedVectorFamily< Family< ScalarBasisType >, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| template<typename BasisType , typename ScalarBasisType , size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const Family< BasisType > &basis1, const Family< TensorizedVectorFamily< ScalarBasisType, N > > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| template<typename BasisType , size_t N> |
| Scalar3Tensor | tripleInt (const Cell &T, const Family< BasisType > &basis1, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| template<typename BasisType1 , typename BasisType2 > |
| Scalar3Tensor | tripleInt (const Cell &T, const BasisType1 &basis1, const Family< BasisType2 > &basis2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| template<size_t N, typename ScalarBasisType > |
| Scalar3Tensor | tripleInt (const Cell &T, const TensorizedVectorFamily< Family< ScalarBasisType >, N > &tens_family1, const TensorizedVectorFamily< MonomialScalarBasisCell, N > &tens_family2, MonomialCellIntegralsType mono_int_map={}) |
| | Handles a derived basis (see other functions for detailed output)
|
| |
| QuadratureRule | generate_quadrature_rule (const Cell &T, const int doe, const bool force_split=false) |
| | Generate quadrature rule on mesh element.
|
| |
| QuadratureRule | generate_quadrature_rule (const Face &F, const int doe) |
| | Generate quadrature rule on mesh face.
|
| |
| QuadratureRule | generate_quadrature_rule (const Edge &E, const int doe) |
| | Generate quadrature rule on mesh edge.
|
| |
| double | parallelipiped_volume_3d (double x[4], double y[4], double z[4]) |
| |
| double | tetra_unit_volume () |
| |
| double | tetra_volume (double x[4], double y[4], double z[4]) |
| |
| double | tetra_sum (double func(double x, double y, double z), double x[4], double y[4], double z[4], size_t nq, double cq0[], double cq1[], double cq2[], double wq[]) |
| |
| double | tetra_unit_sum (double func(double x, double y, double z), size_t nq, double xq[], double yq[], double zq[], double wq[]) |
| |
| size_t | tetra_unit_size (size_t rule) |
| |
| void | tetra_unit_set (size_t rule, size_t nq, double cq0[], double cq1[], double cq2[], double wq[]) |
| |
| double | tetra_sum (double func(double x, double y, double z), double x[4], double y[4], double z[4], int nq, double cq0[], double cq1[], double cq2[], double wq[]) |
| |
|
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Magnetostatics::SolutionPotentialType | constant_u |
| |
| static Magnetostatics::SolutionCurlType | constant_sigma |
| |
| static Magnetostatics::ForcingTermType | constant_f |
| |
| static Magnetostatics::PermeabilityType | constant_mu = Magnetostatics::PermeabilityType(1.) |
| |
| static Magnetostatics::SolutionPotentialType | linear_u |
| |
| static Magnetostatics::SolutionCurlType | linear_sigma |
| |
| static Magnetostatics::ForcingTermType | linear_f |
| |
| static Magnetostatics::PermeabilityType | linear_mu = Magnetostatics::PermeabilityType(1.) |
| |
| static Magnetostatics::SolutionPotentialType | trigonometric_u |
| |
| static Magnetostatics::SolutionCurlType | trigonometric_sigma |
| |
| static Magnetostatics::ForcingTermType | trigonometric_f |
| |
| static Magnetostatics::PermeabilityType | trigonometric_mu = Magnetostatics::PermeabilityType(1.) |
| |
| static Magnetostatics::SolutionPotentialType | variable_permeability_u |
| |
| static Magnetostatics::SolutionCurlType | variable_permeability_sigma |
| |
| static Magnetostatics::ForcingTermType | variable_permeability_f |
| |
| static Magnetostatics::PermeabilityType | variable_permeability_mu |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Magnetostatics::SolutionPotentialType | constant_u |
| |
| static Magnetostatics::SolutionCurlType | constant_sigma |
| |
| static Magnetostatics::ForcingTermType | constant_f |
| |
| static Magnetostatics::PermeabilityType | constant_mu = Magnetostatics::PermeabilityType(1.) |
| |
| static Magnetostatics::SolutionPotentialType | linear_u |
| |
| static Magnetostatics::SolutionCurlType | linear_sigma |
| |
| static Magnetostatics::ForcingTermType | linear_f |
| |
| static Magnetostatics::PermeabilityType | linear_mu = Magnetostatics::PermeabilityType(1.) |
| |
| static Magnetostatics::SolutionPotentialType | trigonometric_u |
| |
| static Magnetostatics::SolutionCurlType | trigonometric_sigma |
| |
| static Magnetostatics::ForcingTermType | trigonometric_f |
| |
| static Magnetostatics::PermeabilityType | trigonometric_mu = Magnetostatics::PermeabilityType(1.) |
| |
| static Magnetostatics::SolutionPotentialType | variable_permeability_u |
| |
| static Magnetostatics::SolutionCurlType | variable_permeability_sigma |
| |
| static Magnetostatics::ForcingTermType | variable_permeability_f |
| |
| static Magnetostatics::PermeabilityType | variable_permeability_mu |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| double | pressure_scaling = 1. |
| |
| double | reynolds = 1. |
| |
| double | navier_scaling = 1. |
| |
| static NavierStokes::VelocityType | trigonometric_u |
| |
| static NavierStokes::VorticityType | trigonometric_curl_u |
| |
| static NavierStokes::PressureType | trigonometric_p |
| |
| static NavierStokes::PressureGradientType | trigonometric_grad_p |
| |
| static NavierStokes::ForcingTermType | trigonometric_curl_u_cross_u |
| |
| static NavierStokes::ForcingTermType | trigonometric_f |
| |
| static NavierStokes::VelocityType | constant_u |
| |
| static NavierStokes::VorticityType | constant_curl_u |
| |
| static NavierStokes::ForcingTermType | constant_curl_u_cross_u |
| |
| static NavierStokes::PressureType | constant_p |
| |
| static NavierStokes::PressureGradientType | constant_grad_p |
| |
| static NavierStokes::ForcingTermType | constant_f |
| |
| static NavierStokes::VelocityType | linear_u |
| |
| static NavierStokes::VorticityType | linear_curl_u |
| |
| static NavierStokes::ForcingTermType | linear_curl_u_cross_u |
| |
| static NavierStokes::PressureType | linear_p |
| |
| static NavierStokes::PressureGradientType | linear_grad_p |
| |
| static NavierStokes::ForcingTermType | linear_f |
| |
| constexpr double | scal_u = 1. |
| |
| static NavierStokes::VelocityType | vertical_u |
| |
| static NavierStokes::VorticityType | vertical_curl_u |
| |
| static NavierStokes::PressureType | vertical_p = trigonometric_p |
| |
| static NavierStokes::PressureGradientType | vertical_grad_p = trigonometric_grad_p |
| |
| static NavierStokes::ForcingTermType | vertical_curl_u_cross_u |
| |
| static NavierStokes::ForcingTermType | vertical_f |
| |
| static NavierStokes::VelocityType | pressflux_u |
| |
| static NavierStokes::VorticityType | pressflux_curl_u |
| |
| static NavierStokes::PressureType | pressflux_p |
| |
| static NavierStokes::PressureGradientType | pressflux_grad_p |
| |
| static NavierStokes::ForcingTermType | pressflux_curl_u_cross_u |
| |
| static NavierStokes::ForcingTermType | pressflux_f |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Stokes::VelocityType | trigonometric_u |
| |
| static Stokes::VorticityType | trigonometric_curl_u |
| |
| static Stokes::PressureType | trigonometric_p |
| |
| static Stokes::PressureGradientType | trigonometric_grad_p |
| |
| static Stokes::ForcingTermType | trigonometric_f |
| |
| static Stokes::ViscosityType | trigonometric_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | linear_u |
| |
| static Stokes::VorticityType | linear_curl_u |
| |
| static Stokes::PressureType | linear_p |
| |
| static Stokes::PressureGradientType | linear_grad_p |
| |
| static Stokes::ForcingTermType | linear_f |
| |
| static Stokes::ViscosityType | linear_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | field_u |
| |
| static Stokes::VorticityType | field_curl_u |
| |
| static Stokes::PressureType | field_p |
| |
| static Stokes::PressureGradientType | field_grad_p |
| |
| static Stokes::ForcingTermType | field_f |
| |
| static Stokes::ViscosityType | field_nu = Stokes::ViscosityType(1.) |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Stokes::VelocityType | trigonometric_u |
| |
| static Stokes::VorticityType | trigonometric_curl_u |
| |
| static Stokes::PressureType | trigonometric_p |
| |
| static Stokes::PressureGradientType | trigonometric_grad_p |
| |
| static Stokes::ForcingTermType | trigonometric_f |
| |
| static Stokes::ViscosityType | trigonometric_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | linear_u |
| |
| static Stokes::VorticityType | linear_curl_u |
| |
| static Stokes::PressureType | linear_p |
| |
| static Stokes::PressureGradientType | linear_grad_p |
| |
| static Stokes::ForcingTermType | linear_f |
| |
| static Stokes::ViscosityType | linear_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | field_u |
| |
| static Stokes::VorticityType | field_curl_u |
| |
| static Stokes::PressureType | field_p |
| |
| static Stokes::PressureGradientType | field_grad_p |
| |
| static Stokes::ForcingTermType | field_f |
| |
| static Stokes::ViscosityType | field_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | vertical_u |
| |
| static Stokes::VorticityType | vertical_curl_u |
| |
| static Stokes::PressureType | vertical_p = trigonometric_p |
| |
| static Stokes::PressureGradientType | vertical_grad_p = trigonometric_grad_p |
| |
| static Stokes::ForcingTermType | vertical_curl_u_cross_u |
| |
| static Stokes::ForcingTermType | vertical_f |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Einstein::TZeroFormType | minkowski_lapse |
| |
| static Einstein::TOneFormType | minkowski_theta0 |
| |
| static Einstein::TOneFormType | minkowski_theta1 |
| |
| static Einstein::TOneFormType | minkowski_theta2 |
| |
| static Einstein::TOneFormType | minkowski_theta3 |
| |
| static Einstein::TCollection1Forms | minkowski_theta = {minkowski_theta0, minkowski_theta1, minkowski_theta2, minkowski_theta3} |
| |
| static Einstein::TOneFormType | minkowski_E0 |
| |
| static Einstein::TOneFormType | minkowski_E1 |
| |
| static Einstein::TOneFormType | minkowski_E2 |
| |
| static Einstein::TOneFormType | minkowski_E3 |
| |
| static Einstein::TCollection1Forms | minkowski_E = {minkowski_E0, minkowski_E1, minkowski_E2, minkowski_E3} |
| |
| static Einstein::TTwoFormType | minkowski_dE0 |
| |
| static Einstein::TTwoFormType | minkowski_dE1 |
| |
| static Einstein::TTwoFormType | minkowski_dE2 |
| |
| static Einstein::TTwoFormType | minkowski_dE3 |
| |
| static Einstein::TCollection1Forms | minkowski_dE = {minkowski_dE0, minkowski_dE1, minkowski_dE2, minkowski_dE3} |
| |
| static Einstein::TTwoFormType | minkowski_B0 |
| |
| static Einstein::TTwoFormType | minkowski_B1 |
| |
| static Einstein::TTwoFormType | minkowski_B2 |
| |
| static Einstein::TTwoFormType | minkowski_B3 |
| |
| static Einstein::TCollection2Forms | minkowski_B = {minkowski_B0, minkowski_B1, minkowski_B2, minkowski_B3} |
| |
| static Einstein::TTwoFormType | minkowski_dtB0 |
| |
| static Einstein::TTwoFormType | minkowski_dtB1 |
| |
| static Einstein::TTwoFormType | minkowski_dtB2 |
| |
| static Einstein::TTwoFormType | minkowski_dtB3 |
| |
| static Einstein::TCollection2Forms | minkowski_dtB = {minkowski_dtB0, minkowski_dtB1, minkowski_dtB2, minkowski_dtB3} |
| |
| static Einstein::TTwoFormType | minkowski_D0 |
| |
| static Einstein::TTwoFormType | minkowski_D1 |
| |
| static Einstein::TTwoFormType | minkowski_D2 |
| |
| static Einstein::TTwoFormType | minkowski_D3 |
| |
| static Einstein::TCollection2Forms | minkowski_D = {minkowski_D0, minkowski_D1, minkowski_D2, minkowski_D3} |
| |
| static Einstein::TTwoFormType | minkowski_dtD0 |
| |
| static Einstein::TTwoFormType | minkowski_dtD1 |
| |
| static Einstein::TTwoFormType | minkowski_dtD2 |
| |
| static Einstein::TTwoFormType | minkowski_dtD3 |
| |
| static Einstein::TCollection2Forms | minkowski_dtD = {minkowski_dtD0, minkowski_dtD1, minkowski_dtD2, minkowski_dtD3} |
| |
| static Einstein::TOneFormType | minkowski_H0 |
| |
| static Einstein::TOneFormType | minkowski_H1 |
| |
| static Einstein::TOneFormType | minkowski_H2 |
| |
| static Einstein::TOneFormType | minkowski_H3 |
| |
| static Einstein::TCollection1Forms | minkowski_H = {minkowski_H0, minkowski_H1, minkowski_H2, minkowski_H3} |
| |
| static Einstein::TTwoFormType | minkowski_dH0 |
| |
| static Einstein::TTwoFormType | minkowski_dH1 |
| |
| static Einstein::TTwoFormType | minkowski_dH2 |
| |
| static Einstein::TTwoFormType | minkowski_dH3 |
| |
| static Einstein::TCollection1Forms | minkowski_dH = {minkowski_dH0, minkowski_dH1, minkowski_dH2, minkowski_dH3} |
| |
| static Einstein::TZeroFormType | kasner_lapse |
| |
| static Einstein::TOneFormType | kasner_theta0 |
| |
| static Einstein::TOneFormType | kasner_theta1 |
| |
| static Einstein::TOneFormType | kasner_theta2 |
| |
| static Einstein::TOneFormType | kasner_theta3 |
| |
| static Einstein::TCollection1Forms | kasner_theta = {kasner_theta0, kasner_theta1, kasner_theta2, kasner_theta3} |
| |
| static Einstein::TOneFormType | kasner_E0 |
| |
| static Einstein::TOneFormType | kasner_E1 |
| |
| static Einstein::TOneFormType | kasner_E2 |
| |
| static Einstein::TOneFormType | kasner_E3 |
| |
| static Einstein::TCollection1Forms | kasner_E = {kasner_E0, kasner_E1, kasner_E2, kasner_E3} |
| |
| static Einstein::TOneFormType | deth_kasner_E0 |
| |
| static Einstein::TOneFormType | deth_kasner_E1 |
| |
| static Einstein::TOneFormType | deth_kasner_E2 |
| |
| static Einstein::TOneFormType | deth_kasner_E3 |
| |
| static Einstein::TCollection1Forms | deth_kasner_E = {deth_kasner_E0, deth_kasner_E1, deth_kasner_E2, deth_kasner_E3} |
| |
| static Einstein::TTwoFormType | kasner_D0 |
| |
| static Einstein::TTwoFormType | kasner_D1 |
| |
| static Einstein::TTwoFormType | kasner_D2 |
| |
| static Einstein::TTwoFormType | kasner_D3 |
| |
| static Einstein::TCollection2Forms | kasner_D = {kasner_D0, kasner_D1, kasner_D2, kasner_D3} |
| |
| static Einstein::TTwoFormType | deth_kasner_D0 |
| |
| static Einstein::TTwoFormType | deth_kasner_D1 |
| |
| static Einstein::TTwoFormType | deth_kasner_D2 |
| |
| static Einstein::TTwoFormType | deth_kasner_D3 |
| |
| static Einstein::TCollection2Forms | deth_kasner_D = {deth_kasner_D0, deth_kasner_D1, deth_kasner_D2, deth_kasner_D3} |
| |
| static Einstein::TTwoFormType | kasner_dtD0 |
| |
| static Einstein::TTwoFormType | kasner_dtD1 |
| |
| static Einstein::TTwoFormType | kasner_dtD2 |
| |
| static Einstein::TTwoFormType | kasner_dtD3 |
| |
| static Einstein::TCollection2Forms | kasner_dtD = {kasner_dtD0, kasner_dtD1, kasner_dtD2, kasner_dtD3} |
| |
| static Einstein::TTwoFormType | deth_kasner_dtD0 |
| |
| static Einstein::TTwoFormType | deth_kasner_dtD1 |
| |
| static Einstein::TTwoFormType | deth_kasner_dtD2 |
| |
| static Einstein::TTwoFormType | deth_kasner_dtD3 |
| |
| static Einstein::TCollection2Forms | deth_kasner_dtD = {deth_kasner_dtD0, deth_kasner_dtD1, deth_kasner_dtD2, deth_kasner_dtD3} |
| |
| static Einstein::TTwoFormType | kasner_B0 |
| |
| static Einstein::TTwoFormType | kasner_B1 |
| |
| static Einstein::TTwoFormType | kasner_B2 |
| |
| static Einstein::TTwoFormType | kasner_B3 |
| |
| static Einstein::TCollection2Forms | kasner_B = {kasner_B0, kasner_B1, kasner_B2, kasner_B3} |
| |
| static Einstein::TOneFormType | kasner_H0 |
| |
| static Einstein::TOneFormType | kasner_H1 |
| |
| static Einstein::TOneFormType | kasner_H2 |
| |
| static Einstein::TOneFormType | kasner_H3 |
| |
| static Einstein::TCollection1Forms | kasner_H = {kasner_H0, kasner_H1, kasner_H2, kasner_H3} |
| |
| static Einstein::TOneFormType | deth_kasner_H0 |
| |
| static Einstein::TOneFormType | deth_kasner_H1 |
| |
| static Einstein::TOneFormType | deth_kasner_H2 |
| |
| static Einstein::TOneFormType | deth_kasner_H3 |
| |
| static Einstein::TCollection1Forms | deth_kasner_H = {deth_kasner_H0, deth_kasner_H1, deth_kasner_H2, deth_kasner_H3} |
| |
| static Einstein::TTwoFormType | kasner_dH0 |
| |
| static Einstein::TTwoFormType | kasner_dH1 |
| |
| static Einstein::TTwoFormType | kasner_dH2 |
| |
| static Einstein::TTwoFormType | kasner_dH3 |
| |
| static Einstein::TCollection2Forms | kasner_dH = {kasner_dH0, kasner_dH1, kasner_dH2, kasner_dH3} |
| |
| static Einstein::TTwoFormType | deth_kasner_dH0 |
| |
| static Einstein::TTwoFormType | deth_kasner_dH1 |
| |
| static Einstein::TTwoFormType | deth_kasner_dH2 |
| |
| static Einstein::TTwoFormType | deth_kasner_dH3 |
| |
| static Einstein::TCollection2Forms | deth_kasner_dH = {deth_kasner_dH0, deth_kasner_dH1, deth_kasner_dH2, deth_kasner_dH3} |
| |
| static Einstein::TZeroFormType | gowdy_lapse |
| |
| static Einstein::TOneFormType | gowdy_theta0 |
| |
| static Einstein::TOneFormType | gowdy_theta1 |
| |
| static Einstein::TOneFormType | gowdy_theta2 |
| |
| static Einstein::TOneFormType | gowdy_theta3 |
| |
| static Einstein::TCollection1Forms | gowdy_theta = {gowdy_theta0, gowdy_theta1, gowdy_theta2, gowdy_theta3} |
| |
| static Einstein::TOneFormType | gowdy_E0 |
| |
| static Einstein::TOneFormType | gowdy_E1 |
| |
| static Einstein::TOneFormType | gowdy_E2 |
| |
| static Einstein::TOneFormType | gowdy_E3 |
| |
| static Einstein::TCollection1Forms | gowdy_E = {gowdy_E0, gowdy_E1, gowdy_E2, gowdy_E3} |
| |
| static Einstein::TTwoFormType | gowdy_dE0 |
| |
| static Einstein::TTwoFormType | gowdy_dE1 |
| |
| static Einstein::TTwoFormType | gowdy_dE2 |
| |
| static Einstein::TTwoFormType | gowdy_dE3 |
| |
| static Einstein::TCollection1Forms | gowdy_dE = {gowdy_dE0, gowdy_dE1, gowdy_dE2, gowdy_dE3} |
| |
| static Einstein::TOneFormType | gowdy_H0 |
| |
| static Einstein::TOneFormType | gowdy_H1 |
| |
| static Einstein::TOneFormType | gowdy_H2 |
| |
| static Einstein::TOneFormType | gowdy_H3 |
| |
| static Einstein::TCollection1Forms | gowdy_H = {gowdy_H0, gowdy_H1, gowdy_H2, gowdy_H3} |
| |
| static Einstein::TTwoFormType | gowdy_dH0 |
| |
| static Einstein::TTwoFormType | gowdy_dH1 |
| |
| static Einstein::TTwoFormType | gowdy_dH2 |
| |
| static Einstein::TTwoFormType | gowdy_dH3 |
| |
| static Einstein::TCollection1Forms | gowdy_dH = {gowdy_dH0, gowdy_dH1, gowdy_dH2, gowdy_dH3} |
| |
| static Einstein::TTwoFormType | gowdy_D0 |
| |
| static Einstein::TTwoFormType | gowdy_D1 |
| |
| static Einstein::TTwoFormType | gowdy_D2 |
| |
| static Einstein::TTwoFormType | gowdy_D3 |
| |
| static Einstein::TCollection2Forms | gowdy_D = {gowdy_D0, gowdy_D1, gowdy_D2, gowdy_D3} |
| |
| static Einstein::TTwoFormType | gowdy_dtD0 |
| |
| static Einstein::TTwoFormType | gowdy_dtD1 |
| |
| static Einstein::TTwoFormType | gowdy_dtD2 |
| |
| static Einstein::TTwoFormType | gowdy_dtD3 |
| |
| static Einstein::TCollection2Forms | gowdy_dtD = {gowdy_dtD0, gowdy_dtD1, gowdy_dtD2, gowdy_dtD3} |
| |
| static Einstein::TTwoFormType | gowdy_B0 |
| |
| static Einstein::TTwoFormType | gowdy_B1 |
| |
| static Einstein::TTwoFormType | gowdy_B2 |
| |
| static Einstein::TTwoFormType | gowdy_B3 |
| |
| static Einstein::TCollection2Forms | gowdy_B = {gowdy_B0, gowdy_B1, gowdy_B2, gowdy_B3} |
| |
| static Einstein::TTwoFormType | gowdy_dtB0 |
| |
| static Einstein::TTwoFormType | gowdy_dtB1 |
| |
| static Einstein::TTwoFormType | gowdy_dtB2 |
| |
| static Einstein::TTwoFormType | gowdy_dtB3 |
| |
| static Einstein::TCollection2Forms | gowdy_dtB = {gowdy_dtB0, gowdy_dtB1, gowdy_dtB2, gowdy_dtB3} |
| |
| static Einstein::TZeroFormType | linear_lapse |
| |
| static Einstein::TOneFormType | linear_theta0 |
| |
| static Einstein::TOneFormType | linear_theta1 |
| |
| static Einstein::TOneFormType | linear_theta2 |
| |
| static Einstein::TOneFormType | linear_theta3 |
| |
| static Einstein::TCollection1Forms | linear_theta = {linear_theta0, linear_theta1, linear_theta2, linear_theta3} |
| |
| static Einstein::TOneFormType | linear_E0 |
| | This is E0 = 1/N dN.
|
| |
| static Einstein::TOneFormType | linear_E1 |
| |
| static Einstein::TOneFormType | linear_E2 |
| |
| static Einstein::TOneFormType | linear_E3 |
| |
| static Einstein::TCollection1Forms | linear_E = {minkowski_E0, linear_E1, linear_E2, linear_E3} |
| |
| static Einstein::TOneFormType | deth_linear_E0 |
| | This is E0 = 1/N dN.
|
| |
| static Einstein::TOneFormType | deth_linear_E1 |
| |
| static Einstein::TOneFormType | deth_linear_E2 |
| |
| static Einstein::TOneFormType | deth_linear_E3 |
| |
| static Einstein::TCollection1Forms | deth_linear_E = {deth_linear_E0, deth_linear_E1, deth_linear_E2, deth_linear_E3} |
| |
| static Einstein::TOneFormType | linear_dE0 |
| |
| static Einstein::TOneFormType | linear_dE1 |
| |
| static Einstein::TOneFormType | linear_dE2 |
| |
| static Einstein::TOneFormType | linear_dE3 |
| |
| static Einstein::TCollection1Forms | linear_dE = {linear_dE0, linear_dE1, linear_dE2, linear_dE3} |
| |
| static Einstein::TTwoFormType | linear_D0 |
| |
| static Einstein::TTwoFormType | linear_D1 |
| |
| static Einstein::TTwoFormType | linear_D2 |
| |
| static Einstein::TTwoFormType | linear_D3 |
| |
| static Einstein::TCollection2Forms | linear_D = {linear_D0, linear_D1, linear_D2, linear_D3} |
| |
| static Einstein::TTwoFormType | linear_dtD0 |
| | Not calculated since not needed.
|
| |
| static Einstein::TTwoFormType | linear_dtD1 |
| |
| static Einstein::TTwoFormType | linear_dtD2 |
| |
| static Einstein::TTwoFormType | linear_dtD3 |
| |
| static Einstein::TCollection2Forms | linear_dtD = {linear_dtD0, linear_dtD1, linear_dtD2, linear_dtD3} |
| |
| static Einstein::TTwoFormType | linear_B0 |
| |
| static Einstein::TTwoFormType | linear_B1 |
| |
| static Einstein::TTwoFormType | linear_B2 |
| |
| static Einstein::TTwoFormType | linear_B3 |
| |
| static Einstein::TCollection2Forms | linear_B = {linear_B0, linear_B1, linear_B2, linear_B3} |
| |
| static Einstein::TTwoFormType | linear_dtB0 |
| |
| static Einstein::TTwoFormType | linear_dtB1 |
| |
| static Einstein::TTwoFormType | linear_dtB2 |
| |
| static Einstein::TTwoFormType | linear_dtB3 |
| |
| static Einstein::TCollection2Forms | linear_dtB = {linear_dtB0, linear_dtB1, linear_dtB2, linear_dtB3} |
| |
| static Einstein::TOneFormType | linear_H0 |
| |
| static Einstein::TOneFormType | linear_H1 |
| |
| static Einstein::TOneFormType | linear_H2 |
| |
| static Einstein::TOneFormType | linear_H3 |
| |
| static Einstein::TCollection1Forms | linear_H = {linear_H0, linear_H1, linear_H2, linear_H3} |
| |
| static Einstein::TTwoFormType | linear_dH0 |
| |
| static Einstein::TTwoFormType | linear_dH1 |
| |
| static Einstein::TTwoFormType | linear_dH2 |
| |
| static Einstein::TTwoFormType | linear_dH3 |
| |
| static Einstein::TCollection2Forms | linear_dH = {linear_dH0, linear_dH1, linear_dH2, linear_dH3} |
| |
| static Einstein::TZeroFormType | constant_lapse |
| |
| static Einstein::TOneFormType | constant_theta0 |
| |
| static Einstein::TOneFormType | constant_theta1 |
| |
| static Einstein::TOneFormType | constant_theta2 |
| |
| static Einstein::TOneFormType | constant_theta3 |
| |
| static Einstein::TCollection1Forms | constant_theta = {constant_theta0, constant_theta1, constant_theta2, constant_theta3} |
| |
| static Einstein::TOneFormType | constant_E0 |
| |
| static Einstein::TOneFormType | constant_E1 |
| |
| static Einstein::TOneFormType | constant_E2 |
| |
| static Einstein::TOneFormType | constant_E3 |
| |
| static Einstein::TCollection1Forms | constant_E = {constant_E0, constant_E1, constant_E2, constant_E3} |
| |
| static Einstein::TOneFormType | constant_dE0 |
| |
| static Einstein::TOneFormType | constant_dE1 |
| |
| static Einstein::TOneFormType | constant_dE2 |
| |
| static Einstein::TOneFormType | constant_dE3 |
| |
| static Einstein::TCollection1Forms | constant_dE = {constant_dE0, constant_dE1, constant_dE2, constant_dE3} |
| |
| static Einstein::TTwoFormType | constant_D0 |
| |
| static Einstein::TTwoFormType | constant_D1 |
| |
| static Einstein::TTwoFormType | constant_D2 |
| |
| static Einstein::TTwoFormType | constant_D3 |
| |
| static Einstein::TCollection2Forms | constant_D = {constant_D0, constant_D1, constant_D2, constant_D3} |
| |
| static Einstein::TTwoFormType | constant_dtD0 |
| |
| static Einstein::TTwoFormType | constant_dtD1 |
| |
| static Einstein::TTwoFormType | constant_dtD2 |
| |
| static Einstein::TTwoFormType | constant_dtD3 |
| |
| static Einstein::TCollection2Forms | constant_dtD = {constant_dtD0, constant_dtD1, constant_dtD2, constant_dtD3} |
| |
| static Einstein::TTwoFormType | constant_B0 |
| |
| static Einstein::TTwoFormType | constant_B1 |
| |
| static Einstein::TTwoFormType | constant_B2 |
| |
| static Einstein::TTwoFormType | constant_B3 |
| |
| static Einstein::TCollection2Forms | constant_B = {constant_B0, constant_B1, constant_B2, constant_B3} |
| |
| static Einstein::TTwoFormType | constant_dtB0 |
| |
| static Einstein::TTwoFormType | constant_dtB1 |
| |
| static Einstein::TTwoFormType | constant_dtB2 |
| |
| static Einstein::TTwoFormType | constant_dtB3 |
| |
| static Einstein::TCollection2Forms | constant_dtB = {constant_dtB0, constant_dtB1, constant_dtB2, constant_dtB3} |
| |
| static Einstein::TOneFormType | constant_H0 |
| |
| static Einstein::TOneFormType | constant_H1 |
| |
| static Einstein::TOneFormType | constant_H2 |
| |
| static Einstein::TOneFormType | constant_H3 |
| |
| static Einstein::TCollection1Forms | constant_H = {constant_H0, constant_H1, constant_H2, constant_H3} |
| |
| static Einstein::TTwoFormType | constant_dH0 |
| |
| static Einstein::TTwoFormType | constant_dH1 |
| |
| static Einstein::TTwoFormType | constant_dH2 |
| |
| static Einstein::TTwoFormType | constant_dH3 |
| |
| static Einstein::TCollection2Forms | constant_dH = {constant_dH0, constant_dH1, constant_dH2, constant_dH3} |
| |
| static Einstein::TZeroFormType | test_lapse |
| |
| static Einstein::TOneFormType | test_theta0 |
| |
| static Einstein::TOneFormType | test_theta1 |
| |
| static Einstein::TOneFormType | test_theta2 |
| |
| static Einstein::TOneFormType | test_theta3 |
| |
| static Einstein::TCollection1Forms | test_theta = {test_theta0, test_theta1, test_theta2, test_theta3} |
| |
| static Einstein::TOneFormType | test_E0 |
| |
| static Einstein::TOneFormType | test_E1 |
| |
| static Einstein::TOneFormType | test_E2 |
| |
| static Einstein::TOneFormType | test_E3 |
| |
| static Einstein::TCollection1Forms | test_E = {test_E0, test_E1, test_E2, test_E3} |
| |
| static Einstein::TOneFormType | test_dE0 |
| |
| static Einstein::TOneFormType | test_dE1 |
| |
| static Einstein::TOneFormType | test_dE2 |
| |
| static Einstein::TOneFormType | test_dE3 |
| |
| static Einstein::TCollection1Forms | test_dE = {test_dE0, test_dE1, test_dE2, test_dE3} |
| |
| static Einstein::TTwoFormType | test_D0 |
| |
| static Einstein::TTwoFormType | test_D1 |
| |
| static Einstein::TTwoFormType | test_D2 |
| |
| static Einstein::TTwoFormType | test_D3 |
| |
| static Einstein::TCollection2Forms | test_D = {test_D0, test_D1, test_D2, test_D3} |
| |
| static Einstein::TTwoFormType | test_dtD0 |
| |
| static Einstein::TTwoFormType | test_dtD1 |
| |
| static Einstein::TTwoFormType | test_dtD2 |
| |
| static Einstein::TTwoFormType | test_dtD3 |
| |
| static Einstein::TCollection2Forms | test_dtD = {test_dtD0, test_dtD1, test_dtD2, test_dtD3} |
| |
| static Einstein::TTwoFormType | test_B0 |
| |
| static Einstein::TTwoFormType | test_B1 |
| |
| static Einstein::TTwoFormType | test_B2 |
| |
| static Einstein::TTwoFormType | test_B3 |
| |
| static Einstein::TCollection2Forms | test_B = {test_B0, test_B1, test_B2, test_B3} |
| |
| static Einstein::TTwoFormType | test_dtB0 |
| |
| static Einstein::TTwoFormType | test_dtB1 |
| |
| static Einstein::TTwoFormType | test_dtB2 |
| |
| static Einstein::TTwoFormType | test_dtB3 |
| |
| static Einstein::TCollection2Forms | test_dtB = {test_dtB0, test_dtB1, test_dtB2, test_dtB3} |
| |
| static Einstein::TOneFormType | test_H0 |
| |
| static Einstein::TOneFormType | test_H1 |
| |
| static Einstein::TOneFormType | test_H2 |
| |
| static Einstein::TOneFormType | test_H3 |
| |
| static Einstein::TCollection1Forms | test_H = {test_H0, test_H1, test_H2, test_H3} |
| |
| static Einstein::TTwoFormType | test_dH0 |
| |
| static Einstein::TTwoFormType | test_dH1 |
| |
| static Einstein::TTwoFormType | test_dH2 |
| |
| static Einstein::TTwoFormType | test_dH3 |
| |
| static Einstein::TCollection2Forms | test_dH = {test_dH0, test_dH1, test_dH2, test_dH3} |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Einstein::TZeroFormType | minkowski_lapse |
| |
| static Einstein::TOneFormType | minkowski_theta0 |
| |
| static Einstein::TOneFormType | minkowski_theta1 |
| |
| static Einstein::TOneFormType | minkowski_theta2 |
| |
| static Einstein::TOneFormType | minkowski_theta3 |
| |
| static Einstein::TCollection1Forms | minkowski_theta = {minkowski_theta0, minkowski_theta1, minkowski_theta2, minkowski_theta3} |
| |
| static Einstein::TOneFormType | minkowski_E0 |
| |
| static Einstein::TOneFormType | minkowski_E1 |
| |
| static Einstein::TOneFormType | minkowski_E2 |
| |
| static Einstein::TOneFormType | minkowski_E3 |
| |
| static Einstein::TCollection1Forms | minkowski_E = {minkowski_E0, minkowski_E1, minkowski_E2, minkowski_E3} |
| |
| static Einstein::TTwoFormType | minkowski_dE0 |
| |
| static Einstein::TTwoFormType | minkowski_dE1 |
| |
| static Einstein::TTwoFormType | minkowski_dE2 |
| |
| static Einstein::TTwoFormType | minkowski_dE3 |
| |
| static Einstein::TCollection1Forms | minkowski_dE = {minkowski_dE0, minkowski_dE1, minkowski_dE2, minkowski_dE3} |
| |
| static Einstein::TTwoFormType | minkowski_B0 |
| |
| static Einstein::TTwoFormType | minkowski_B1 |
| |
| static Einstein::TTwoFormType | minkowski_B2 |
| |
| static Einstein::TTwoFormType | minkowski_B3 |
| |
| static Einstein::TCollection2Forms | minkowski_B = {minkowski_B0, minkowski_B1, minkowski_B2, minkowski_B3} |
| |
| static Einstein::TTwoFormType | minkowski_dtB0 |
| |
| static Einstein::TTwoFormType | minkowski_dtB1 |
| |
| static Einstein::TTwoFormType | minkowski_dtB2 |
| |
| static Einstein::TTwoFormType | minkowski_dtB3 |
| |
| static Einstein::TCollection2Forms | minkowski_dtB = {minkowski_dtB0, minkowski_dtB1, minkowski_dtB2, minkowski_dtB3} |
| |
| static Einstein::TTwoFormType | minkowski_D0 |
| |
| static Einstein::TTwoFormType | minkowski_D1 |
| |
| static Einstein::TTwoFormType | minkowski_D2 |
| |
| static Einstein::TTwoFormType | minkowski_D3 |
| |
| static Einstein::TCollection2Forms | minkowski_D = {minkowski_D0, minkowski_D1, minkowski_D2, minkowski_D3} |
| |
| static Einstein::TTwoFormType | minkowski_dtD0 |
| |
| static Einstein::TTwoFormType | minkowski_dtD1 |
| |
| static Einstein::TTwoFormType | minkowski_dtD2 |
| |
| static Einstein::TTwoFormType | minkowski_dtD3 |
| |
| static Einstein::TCollection2Forms | minkowski_dtD = {minkowski_dtD0, minkowski_dtD1, minkowski_dtD2, minkowski_dtD3} |
| |
| static Einstein::TOneFormType | minkowski_H0 |
| |
| static Einstein::TOneFormType | minkowski_H1 |
| |
| static Einstein::TOneFormType | minkowski_H2 |
| |
| static Einstein::TOneFormType | minkowski_H3 |
| |
| static Einstein::TCollection1Forms | minkowski_H = {minkowski_H0, minkowski_H1, minkowski_H2, minkowski_H3} |
| |
| static Einstein::TTwoFormType | minkowski_dH0 |
| |
| static Einstein::TTwoFormType | minkowski_dH1 |
| |
| static Einstein::TTwoFormType | minkowski_dH2 |
| |
| static Einstein::TTwoFormType | minkowski_dH3 |
| |
| static Einstein::TCollection1Forms | minkowski_dH = {minkowski_dH0, minkowski_dH1, minkowski_dH2, minkowski_dH3} |
| |
| static Einstein::TZeroFormType | kasner_lapse |
| |
| static Einstein::TOneFormType | kasner_theta0 |
| |
| static Einstein::TOneFormType | kasner_theta1 |
| |
| static Einstein::TOneFormType | kasner_theta2 |
| |
| static Einstein::TOneFormType | kasner_theta3 |
| |
| static Einstein::TCollection1Forms | kasner_theta = {kasner_theta0, kasner_theta1, kasner_theta2, kasner_theta3} |
| |
| static Einstein::TOneFormType | kasner_E0 |
| |
| static Einstein::TOneFormType | kasner_E1 |
| |
| static Einstein::TOneFormType | kasner_E2 |
| |
| static Einstein::TOneFormType | kasner_E3 |
| |
| static Einstein::TCollection1Forms | kasner_E = {kasner_E0, kasner_E1, kasner_E2, kasner_E3} |
| |
| static Einstein::TTwoFormType | kasner_D0 |
| |
| static Einstein::TTwoFormType | kasner_D1 |
| |
| static Einstein::TTwoFormType | kasner_D2 |
| |
| static Einstein::TTwoFormType | kasner_D3 |
| |
| static Einstein::TCollection2Forms | kasner_D = {kasner_D0, kasner_D1, kasner_D2, kasner_D3} |
| |
| static Einstein::TTwoFormType | kasner_dtD0 |
| |
| static Einstein::TTwoFormType | kasner_dtD1 |
| |
| static Einstein::TTwoFormType | kasner_dtD2 |
| |
| static Einstein::TTwoFormType | kasner_dtD3 |
| |
| static Einstein::TCollection2Forms | kasner_dtD = {kasner_dtD0, kasner_dtD1, kasner_dtD2, kasner_dtD3} |
| |
| static Einstein::TTwoFormType | kasner_B0 |
| |
| static Einstein::TTwoFormType | kasner_B1 |
| |
| static Einstein::TTwoFormType | kasner_B2 |
| |
| static Einstein::TTwoFormType | kasner_B3 |
| |
| static Einstein::TCollection2Forms | kasner_B = {kasner_B0, kasner_B1, kasner_B2, kasner_B3} |
| |
| static Einstein::TOneFormType | kasner_H0 |
| |
| static Einstein::TOneFormType | kasner_H1 |
| |
| static Einstein::TOneFormType | kasner_H2 |
| |
| static Einstein::TOneFormType | kasner_H3 |
| |
| static Einstein::TCollection1Forms | kasner_H = {kasner_H0, kasner_H1, kasner_H2, kasner_H3} |
| |
| static Einstein::TTwoFormType | kasner_dH0 |
| |
| static Einstein::TTwoFormType | kasner_dH1 |
| |
| static Einstein::TTwoFormType | kasner_dH2 |
| |
| static Einstein::TTwoFormType | kasner_dH3 |
| |
| static Einstein::TCollection2Forms | kasner_dH = {kasner_dH0, kasner_dH1, kasner_dH2, kasner_dH3} |
| |
| static Einstein::TZeroFormType | gowdy_lapse |
| |
| static Einstein::TOneFormType | gowdy_theta0 |
| |
| static Einstein::TOneFormType | gowdy_theta1 |
| |
| static Einstein::TOneFormType | gowdy_theta2 |
| |
| static Einstein::TOneFormType | gowdy_theta3 |
| |
| static Einstein::TCollection1Forms | gowdy_theta = {gowdy_theta0, gowdy_theta1, gowdy_theta2, gowdy_theta3} |
| |
| static Einstein::TOneFormType | gowdy_E0 |
| |
| static Einstein::TOneFormType | gowdy_E1 |
| |
| static Einstein::TOneFormType | gowdy_E2 |
| |
| static Einstein::TOneFormType | gowdy_E3 |
| |
| static Einstein::TCollection1Forms | gowdy_E = {gowdy_E0, gowdy_E1, gowdy_E2, gowdy_E3} |
| |
| static Einstein::TTwoFormType | gowdy_dE0 |
| |
| static Einstein::TTwoFormType | gowdy_dE1 |
| |
| static Einstein::TTwoFormType | gowdy_dE2 |
| |
| static Einstein::TTwoFormType | gowdy_dE3 |
| |
| static Einstein::TCollection1Forms | gowdy_dE = {gowdy_dE0, gowdy_dE1, gowdy_dE2, gowdy_dE3} |
| |
| static Einstein::TOneFormType | gowdy_H0 |
| |
| static Einstein::TOneFormType | gowdy_H1 |
| |
| static Einstein::TOneFormType | gowdy_H2 |
| |
| static Einstein::TOneFormType | gowdy_H3 |
| |
| static Einstein::TCollection1Forms | gowdy_H = {gowdy_H0, gowdy_H1, gowdy_H2, gowdy_H3} |
| |
| static Einstein::TTwoFormType | gowdy_dH0 |
| |
| static Einstein::TTwoFormType | gowdy_dH1 |
| |
| static Einstein::TTwoFormType | gowdy_dH2 |
| |
| static Einstein::TTwoFormType | gowdy_dH3 |
| |
| static Einstein::TCollection1Forms | gowdy_dH = {gowdy_dH0, gowdy_dH1, gowdy_dH2, gowdy_dH3} |
| |
| static Einstein::TTwoFormType | gowdy_D0 |
| |
| static Einstein::TTwoFormType | gowdy_D1 |
| |
| static Einstein::TTwoFormType | gowdy_D2 |
| |
| static Einstein::TTwoFormType | gowdy_D3 |
| |
| static Einstein::TCollection2Forms | gowdy_D = {gowdy_D0, gowdy_D1, gowdy_D2, gowdy_D3} |
| |
| static Einstein::TTwoFormType | gowdy_dtD0 |
| |
| static Einstein::TTwoFormType | gowdy_dtD1 |
| |
| static Einstein::TTwoFormType | gowdy_dtD2 |
| |
| static Einstein::TTwoFormType | gowdy_dtD3 |
| |
| static Einstein::TCollection2Forms | gowdy_dtD = {gowdy_dtD0, gowdy_dtD1, gowdy_dtD2, gowdy_dtD3} |
| |
| static Einstein::TTwoFormType | gowdy_B0 |
| |
| static Einstein::TTwoFormType | gowdy_B1 |
| |
| static Einstein::TTwoFormType | gowdy_B2 |
| |
| static Einstein::TTwoFormType | gowdy_B3 |
| |
| static Einstein::TCollection2Forms | gowdy_B = {gowdy_B0, gowdy_B1, gowdy_B2, gowdy_B3} |
| |
| static Einstein::TTwoFormType | gowdy_dtB0 |
| |
| static Einstein::TTwoFormType | gowdy_dtB1 |
| |
| static Einstein::TTwoFormType | gowdy_dtB2 |
| |
| static Einstein::TTwoFormType | gowdy_dtB3 |
| |
| static Einstein::TCollection2Forms | gowdy_dtB = {gowdy_dtB0, gowdy_dtB1, gowdy_dtB2, gowdy_dtB3} |
| |
| static Einstein::TZeroFormType | linear_lapse |
| |
| static Einstein::TOneFormType | linear_theta0 |
| |
| static Einstein::TOneFormType | linear_theta1 |
| |
| static Einstein::TOneFormType | linear_theta2 |
| |
| static Einstein::TOneFormType | linear_theta3 |
| |
| static Einstein::TCollection1Forms | linear_theta = {linear_theta0, linear_theta1, linear_theta2, linear_theta3} |
| |
| static Einstein::TOneFormType | linear_E0 |
| | This is E0 = 1/N dN.
|
| |
| static Einstein::TOneFormType | linear_E1 |
| |
| static Einstein::TOneFormType | linear_E2 |
| |
| static Einstein::TOneFormType | linear_E3 |
| |
| static Einstein::TCollection1Forms | linear_E = {minkowski_E0, linear_E1, linear_E2, linear_E3} |
| |
| static Einstein::TOneFormType | deth_linear_E0 |
| | This is E0 = 1/N dN.
|
| |
| static Einstein::TOneFormType | deth_linear_E1 |
| |
| static Einstein::TOneFormType | deth_linear_E2 |
| |
| static Einstein::TOneFormType | deth_linear_E3 |
| |
| static Einstein::TCollection1Forms | deth_linear_E = {deth_linear_E0, deth_linear_E1, deth_linear_E2, deth_linear_E3} |
| |
| static Einstein::TOneFormType | linear_dE0 |
| |
| static Einstein::TOneFormType | linear_dE1 |
| |
| static Einstein::TOneFormType | linear_dE2 |
| |
| static Einstein::TOneFormType | linear_dE3 |
| |
| static Einstein::TCollection1Forms | linear_dE = {linear_dE0, linear_dE1, linear_dE2, linear_dE3} |
| |
| static Einstein::TTwoFormType | linear_D0 |
| |
| static Einstein::TTwoFormType | linear_D1 |
| |
| static Einstein::TTwoFormType | linear_D2 |
| |
| static Einstein::TTwoFormType | linear_D3 |
| |
| static Einstein::TCollection2Forms | linear_D = {linear_D0, linear_D1, linear_D2, linear_D3} |
| |
| static Einstein::TTwoFormType | linear_dtD0 |
| | Not calculated since not needed.
|
| |
| static Einstein::TTwoFormType | linear_dtD1 |
| |
| static Einstein::TTwoFormType | linear_dtD2 |
| |
| static Einstein::TTwoFormType | linear_dtD3 |
| |
| static Einstein::TCollection2Forms | linear_dtD = {linear_dtD0, linear_dtD1, linear_dtD2, linear_dtD3} |
| |
| static Einstein::TTwoFormType | linear_B0 |
| |
| static Einstein::TTwoFormType | linear_B1 |
| |
| static Einstein::TTwoFormType | linear_B2 |
| |
| static Einstein::TTwoFormType | linear_B3 |
| |
| static Einstein::TCollection2Forms | linear_B = {linear_B0, linear_B1, linear_B2, linear_B3} |
| |
| static Einstein::TTwoFormType | linear_dtB0 |
| |
| static Einstein::TTwoFormType | linear_dtB1 |
| |
| static Einstein::TTwoFormType | linear_dtB2 |
| |
| static Einstein::TTwoFormType | linear_dtB3 |
| |
| static Einstein::TCollection2Forms | linear_dtB = {linear_dtB0, linear_dtB1, linear_dtB2, linear_dtB3} |
| |
| static Einstein::TOneFormType | linear_H0 |
| |
| static Einstein::TOneFormType | linear_H1 |
| |
| static Einstein::TOneFormType | linear_H2 |
| |
| static Einstein::TOneFormType | linear_H3 |
| |
| static Einstein::TCollection1Forms | linear_H = {linear_H0, linear_H1, linear_H2, linear_H3} |
| |
| static Einstein::TTwoFormType | linear_dH0 |
| |
| static Einstein::TTwoFormType | linear_dH1 |
| |
| static Einstein::TTwoFormType | linear_dH2 |
| |
| static Einstein::TTwoFormType | linear_dH3 |
| |
| static Einstein::TCollection2Forms | linear_dH = {linear_dH0, linear_dH1, linear_dH2, linear_dH3} |
| |
| static Einstein::TZeroFormType | constant_lapse |
| |
| static Einstein::TOneFormType | constant_theta0 |
| |
| static Einstein::TOneFormType | constant_theta1 |
| |
| static Einstein::TOneFormType | constant_theta2 |
| |
| static Einstein::TOneFormType | constant_theta3 |
| |
| static Einstein::TCollection1Forms | constant_theta = {constant_theta0, constant_theta1, constant_theta2, constant_theta3} |
| |
| static Einstein::TOneFormType | constant_E0 |
| |
| static Einstein::TOneFormType | constant_E1 |
| |
| static Einstein::TOneFormType | constant_E2 |
| |
| static Einstein::TOneFormType | constant_E3 |
| |
| static Einstein::TCollection1Forms | constant_E = {constant_E0, constant_E1, constant_E2, constant_E3} |
| |
| static Einstein::TOneFormType | constant_dE0 |
| |
| static Einstein::TOneFormType | constant_dE1 |
| |
| static Einstein::TOneFormType | constant_dE2 |
| |
| static Einstein::TOneFormType | constant_dE3 |
| |
| static Einstein::TCollection1Forms | constant_dE = {constant_dE0, constant_dE1, constant_dE2, constant_dE3} |
| |
| static Einstein::TTwoFormType | constant_D0 |
| |
| static Einstein::TTwoFormType | constant_D1 |
| |
| static Einstein::TTwoFormType | constant_D2 |
| |
| static Einstein::TTwoFormType | constant_D3 |
| |
| static Einstein::TCollection2Forms | constant_D = {constant_D0, constant_D1, constant_D2, constant_D3} |
| |
| static Einstein::TTwoFormType | constant_dtD0 |
| |
| static Einstein::TTwoFormType | constant_dtD1 |
| |
| static Einstein::TTwoFormType | constant_dtD2 |
| |
| static Einstein::TTwoFormType | constant_dtD3 |
| |
| static Einstein::TCollection2Forms | constant_dtD = {constant_dtD0, constant_dtD1, constant_dtD2, constant_dtD3} |
| |
| static Einstein::TTwoFormType | constant_B0 |
| |
| static Einstein::TTwoFormType | constant_B1 |
| |
| static Einstein::TTwoFormType | constant_B2 |
| |
| static Einstein::TTwoFormType | constant_B3 |
| |
| static Einstein::TCollection2Forms | constant_B = {constant_B0, constant_B1, constant_B2, constant_B3} |
| |
| static Einstein::TTwoFormType | constant_dtB0 |
| |
| static Einstein::TTwoFormType | constant_dtB1 |
| |
| static Einstein::TTwoFormType | constant_dtB2 |
| |
| static Einstein::TTwoFormType | constant_dtB3 |
| |
| static Einstein::TCollection2Forms | constant_dtB = {constant_dtB0, constant_dtB1, constant_dtB2, constant_dtB3} |
| |
| static Einstein::TOneFormType | constant_H0 |
| |
| static Einstein::TOneFormType | constant_H1 |
| |
| static Einstein::TOneFormType | constant_H2 |
| |
| static Einstein::TOneFormType | constant_H3 |
| |
| static Einstein::TCollection1Forms | constant_H = {constant_H0, constant_H1, constant_H2, constant_H3} |
| |
| static Einstein::TTwoFormType | constant_dH0 |
| |
| static Einstein::TTwoFormType | constant_dH1 |
| |
| static Einstein::TTwoFormType | constant_dH2 |
| |
| static Einstein::TTwoFormType | constant_dH3 |
| |
| static Einstein::TCollection2Forms | constant_dH = {constant_dH0, constant_dH1, constant_dH2, constant_dH3} |
| |
| static Einstein::TZeroFormType | test_lapse |
| |
| static Einstein::TOneFormType | test_theta0 |
| |
| static Einstein::TOneFormType | test_theta1 |
| |
| static Einstein::TOneFormType | test_theta2 |
| |
| static Einstein::TOneFormType | test_theta3 |
| |
| static Einstein::TCollection1Forms | test_theta = {test_theta0, test_theta1, test_theta2, test_theta3} |
| |
| static Einstein::TOneFormType | test_E0 |
| |
| static Einstein::TOneFormType | test_E1 |
| |
| static Einstein::TOneFormType | test_E2 |
| |
| static Einstein::TOneFormType | test_E3 |
| |
| static Einstein::TCollection1Forms | test_E = {test_E0, test_E1, test_E2, test_E3} |
| |
| static Einstein::TOneFormType | test_dE0 |
| |
| static Einstein::TOneFormType | test_dE1 |
| |
| static Einstein::TOneFormType | test_dE2 |
| |
| static Einstein::TOneFormType | test_dE3 |
| |
| static Einstein::TCollection1Forms | test_dE = {test_dE0, test_dE1, test_dE2, test_dE3} |
| |
| static Einstein::TTwoFormType | test_D0 |
| |
| static Einstein::TTwoFormType | test_D1 |
| |
| static Einstein::TTwoFormType | test_D2 |
| |
| static Einstein::TTwoFormType | test_D3 |
| |
| static Einstein::TCollection2Forms | test_D = {test_D0, test_D1, test_D2, test_D3} |
| |
| static Einstein::TTwoFormType | test_dtD0 |
| |
| static Einstein::TTwoFormType | test_dtD1 |
| |
| static Einstein::TTwoFormType | test_dtD2 |
| |
| static Einstein::TTwoFormType | test_dtD3 |
| |
| static Einstein::TCollection2Forms | test_dtD = {test_dtD0, test_dtD1, test_dtD2, test_dtD3} |
| |
| static Einstein::TTwoFormType | test_B0 |
| |
| static Einstein::TTwoFormType | test_B1 |
| |
| static Einstein::TTwoFormType | test_B2 |
| |
| static Einstein::TTwoFormType | test_B3 |
| |
| static Einstein::TCollection2Forms | test_B = {test_B0, test_B1, test_B2, test_B3} |
| |
| static Einstein::TTwoFormType | test_dtB0 |
| |
| static Einstein::TTwoFormType | test_dtB1 |
| |
| static Einstein::TTwoFormType | test_dtB2 |
| |
| static Einstein::TTwoFormType | test_dtB3 |
| |
| static Einstein::TCollection2Forms | test_dtB = {test_dtB0, test_dtB1, test_dtB2, test_dtB3} |
| |
| static Einstein::TOneFormType | test_H0 |
| |
| static Einstein::TOneFormType | test_H1 |
| |
| static Einstein::TOneFormType | test_H2 |
| |
| static Einstein::TOneFormType | test_H3 |
| |
| static Einstein::TCollection1Forms | test_H = {test_H0, test_H1, test_H2, test_H3} |
| |
| static Einstein::TTwoFormType | test_dH0 |
| |
| static Einstein::TTwoFormType | test_dH1 |
| |
| static Einstein::TTwoFormType | test_dH2 |
| |
| static Einstein::TTwoFormType | test_dH3 |
| |
| static Einstein::TCollection2Forms | test_dH = {test_dH0, test_dH1, test_dH2, test_dH3} |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| double | scaling_mu = 1. |
| |
| double | scaling_kappainv = 1. |
| |
| double constexpr | eps =1e-14 |
| |
| static BrinkmanParameters::ViscosityType | linear_mu = BrinkmanParameters::ViscosityType(1.) |
| |
| static BrinkmanParameters::PermeabilityInvType | linear_kappainv = BrinkmanParameters::PermeabilityInvType(1.) |
| |
| static const MatrixRd | mat_u = (MatrixRd() << 1.,2.,3., 0.,-1.,1. , 0.,1.,1.).finished() |
| |
| static const VectorRd | vec_p = VectorRd(-1., 2., -5.) |
| |
| static Brinkman::VelocityType | linear_u |
| |
| static Brinkman::PressureType | linear_p |
| |
| static Brinkman::VelocityGradientType | linear_gradu |
| |
| static Brinkman::PressureGradientType | linear_gradp |
| |
| static Brinkman::MomentumForcingTermType | linear_f |
| |
| static Brinkman::CompressibilityForcingTermType | linear_g = [](const VectorRd & x)->double { return linear_gradu(x).trace();} |
| |
| static BrinkmanParameters::ViscosityType | quadratic_mu = BrinkmanParameters::ViscosityType(1.) |
| |
| static BrinkmanParameters::PermeabilityInvType | quadratic_kappainv = BrinkmanParameters::PermeabilityInvType(1.) |
| |
| static Brinkman::VelocityType | quadratic_u |
| |
| static Brinkman::VelocityGradientType | quadratic_gradu |
| |
| static Brinkman::PressureType | quadratic_p |
| |
| static Brinkman::PressureGradientType | quadratic_gradp |
| |
| static Brinkman::MomentumForcingTermType | quadratic_f |
| |
| static Brinkman::CompressibilityForcingTermType | quadratic_g = [](const VectorRd & x)->double { return quadratic_gradu(x).trace();} |
| |
| static BrinkmanParameters::ViscosityType | cubic_mu = BrinkmanParameters::ViscosityType(1.) |
| |
| static BrinkmanParameters::PermeabilityInvType | cubic_kappainv = BrinkmanParameters::PermeabilityInvType(1.) |
| |
| static Brinkman::VelocityType | cubic_u |
| |
| static Brinkman::VelocityGradientType | cubic_gradu |
| |
| static Brinkman::PressureType | cubic_p |
| |
| static Brinkman::PressureGradientType | cubic_gradp |
| |
| static Brinkman::MomentumForcingTermType | cubic_f |
| |
| static Brinkman::CompressibilityForcingTermType | cubic_g = [](const VectorRd & x)->double { return cubic_gradu(x).trace();} |
| |
| static BrinkmanParameters::ViscosityType | trigonometric_mu = BrinkmanParameters::ViscosityType(1.) |
| |
| static BrinkmanParameters::PermeabilityInvType | trigonometric_kappainv = BrinkmanParameters::PermeabilityInvType(1.) |
| |
| static Brinkman::VelocityType | trigonometric_u |
| |
| static Brinkman::VelocityGradientType | trigonometric_gradu |
| |
| static Brinkman::PressureType | trigonometric_p |
| |
| static Brinkman::PressureGradientType | trigonometric_gradp |
| |
| static Brinkman::MomentumForcingTermType | trigonometric_f |
| |
| static Brinkman::CompressibilityForcingTermType | trigonometric_g = [](const VectorRd & x)->double { return trigonometric_gradu(x).trace();} |
| |
| static BrinkmanParameters::ViscosityType | regimes_mu = BrinkmanParameters::ViscosityType(1.) |
| |
| static BrinkmanParameters::PermeabilityInvType | regimes_kappainv = BrinkmanParameters::PermeabilityInvType(1.) |
| |
| static Brinkman::PressureType | regimes_p = trigonometric_p |
| |
| static Brinkman::PressureGradientType | regimes_gradp = trigonometric_gradp |
| |
| static Brinkman::VelocityType | regimes_uD |
| |
| static Brinkman::VelocityGradientType | regimes_graduD |
| |
| static Brinkman::VelocityType | regimes_uS = trigonometric_u |
| |
| static Brinkman::VelocityGradientType | regimes_graduS = trigonometric_gradu |
| |
| static std::function< double(const VectorRd &)> | XiS |
| |
| static Brinkman::VelocityType | regimes_u = [](const VectorRd & x) -> VectorRd { return XiS(x) * regimes_uS(x) + (1.-XiS(x)) * regimes_uD(x);} |
| |
| static Brinkman::VelocityGradientType | regimes_gradu = [](const VectorRd & x) -> MatrixRd { return XiS(x) * regimes_graduS(x) + (1.-XiS(x)) * regimes_graduD(x);} |
| |
| static Brinkman::MomentumForcingTermType | regimes_f |
| |
| static Brinkman::CompressibilityForcingTermType | regimes_g = [](const VectorRd & x)->double { return regimes_gradu(x).trace() ;} |
| |
| static std::function< double(const VectorRd &)> | XiV = [](const VectorRd & x)->double { return (x.z() > 2*std::abs(x.x()-1.)+0.5-eps); } |
| |
| static BrinkmanParameters::ViscosityType | vcracked_mu = BrinkmanParameters::ViscosityType([](const VectorRd & x)->double { return 0.01 * XiV(x);}) |
| |
| static BrinkmanParameters::PermeabilityInvType | vcracked_kappainv = BrinkmanParameters::PermeabilityInvType([](const VectorRd & x)->double { return 1e-5*(1.-XiV(x)) + 0.001*XiV(x);}) |
| |
| static Brinkman::VelocityType | vcracked_u |
| |
| static Brinkman::VelocityGradientType | vcracked_gradu |
| |
| static Brinkman::PressureType | vcracked_p |
| |
| static Brinkman::PressureGradientType | vcracked_gradp |
| |
| static Brinkman::MomentumForcingTermType | vcracked_f |
| |
| static Brinkman::CompressibilityForcingTermType | vcracked_g |
| |
| static std::function< double(const VectorRd &)> | XiCavity |
| |
| static std::function< double(const VectorRd &)> | XiWedge |
| |
| static std::function< double(const VectorRd &)> | XiBox = [](const VectorRd & x)->double { return 1. - XiCavity(x) - XiWedge(x); } |
| |
| constexpr double | viscosity_in_cavity = 0.01 |
| |
| static BrinkmanParameters::ViscosityType | cavity_mu = viscosity_in_cavity * BrinkmanParameters::ViscosityType(XiCavity) |
| |
| constexpr double | permeability_in_wedge = 1e-2 |
| |
| constexpr double | permeability_in_box = 1e-7 |
| |
| static BrinkmanParameters::PermeabilityInvType | cavity_kappainv |
| |
| static Brinkman::VelocityType | cavity_u |
| |
| static Brinkman::VelocityGradientType | cavity_gradu |
| |
| static Brinkman::PressureType | cavity_p |
| |
| static Brinkman::PressureGradientType | cavity_gradp |
| |
| static Brinkman::MomentumForcingTermType | cavity_f |
| |
| static Brinkman::CompressibilityForcingTermType | cavity_g |
| |
| static std::function< double(const VectorRd &)> | Xi_S |
| |
| static std::function< double(const VectorRd &)> | Xi_D |
| |
| constexpr double | viscosity_S = 1. |
| |
| constexpr double | viscosity_D = 0. |
| |
| static BrinkmanParameters::ViscosityType | tworegions_mu |
| |
| constexpr double | permeability_S = 1e-7 |
| |
| constexpr double | permeability_D = 1e-2 |
| |
| static BrinkmanParameters::PermeabilityInvType | tworegions_kappainv |
| |
| static std::function< VectorRd(const VectorRd &)> | alpha |
| |
| static std::function< VectorRd(const VectorRd &)> | beta_S |
| |
| static std::function< VectorRd(const VectorRd &)> | beta_D |
| |
| static Brinkman::VelocityType | tworegions_u |
| |
| static Brinkman::VelocityGradientType | grad_alpha |
| |
| static Brinkman::VelocityGradientType | grad_beta_S |
| |
| static Brinkman::VelocityGradientType | grad_beta_D |
| |
| static Brinkman::VelocityGradientType | tworegions_gradu |
| |
| static Brinkman::PressureType | tworegions_p = trigonometric_p |
| |
| static Brinkman::PressureGradientType | tworegions_gradp = trigonometric_gradp |
| |
| static Brinkman::MomentumForcingTermType | DivGrad_alpha |
| |
| static Brinkman::MomentumForcingTermType | DivGrad_beta_S |
| |
| static Brinkman::MomentumForcingTermType | DivGrad_beta_D |
| |
| static Brinkman::MomentumForcingTermType | tworegions_f |
| |
| static Brinkman::CompressibilityForcingTermType | tworegions_g = [](const VectorRd & x)->double { return tworegions_gradu(x).trace();} |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static const VectorRd | vec_a = VectorRd(1.,2.,3.) |
| |
| static FullGradientDiffusion::SolutionType | linear_u |
| |
| static FullGradientDiffusion::SolutionGradientType | linear_gradu |
| |
| static FullGradientDiffusion::ForcingTermType | linear_f |
| |
| static FullGradientDiffusion::PermeabilityType | linear_kappa = FullGradientDiffusion::PermeabilityType(1.) |
| |
| static FullGradientDiffusion::SolutionType | trigonometric_u |
| |
| static FullGradientDiffusion::SolutionGradientType | trigonometric_gradu |
| |
| static FullGradientDiffusion::ForcingTermType | trigonometric_f |
| |
| static FullGradientDiffusion::PermeabilityType | trigonometric_kappa = FullGradientDiffusion::PermeabilityType(1.) |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static YangMills::TElectricFieldType | trigonometric_E1 |
| |
| static YangMills::TElectricFieldType | trigonometric_E2 |
| |
| static YangMills::TElectricFieldType | trigonometric_E3 |
| |
| static YangMills::TLAElectricFieldType | trigonometric_E = {trigonometric_E1, trigonometric_E2, trigonometric_E3} |
| |
| static YangMills::TElectricFieldType | trigonometric_A1 |
| |
| static YangMills::TElectricFieldType | trigonometric_A2 |
| |
| static YangMills::TElectricFieldType | trigonometric_A3 |
| |
| static YangMills::TLAElectricFieldType | trigonometric_A = {trigonometric_A1, trigonometric_A2, trigonometric_A3} |
| |
| static YangMills::TMagneticFieldType | trigonometric_B1_linear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B2_linear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B3_linear |
| |
| static YangMills::TLAMagneticFieldType | trigonometric_B_linear = {trigonometric_B1_linear, trigonometric_B2_linear, trigonometric_B3_linear} |
| |
| static YangMills::TMagneticFieldType | trigonometric_B1_nonlinear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B2_nonlinear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B3_nonlinear |
| |
| static YangMills::TLAMagneticFieldType | trigonometric_B_nonlinear = {trigonometric_B1_nonlinear, trigonometric_B2_nonlinear, trigonometric_B3_nonlinear} |
| |
| static YangMills::TElectricFieldType | trigonometric_dtE1 |
| |
| static YangMills::TElectricFieldType | trigonometric_dtE2 |
| |
| static YangMills::TElectricFieldType | trigonometric_dtE3 |
| |
| static YangMills::TLAElectricFieldType | trigonometric_dtE = {trigonometric_dtE1, trigonometric_dtE2, trigonometric_dtE3} |
| |
| static YangMills::TForcingTermType | trigonometric_f1_linear |
| |
| static YangMills::TForcingTermType | trigonometric_f2_linear |
| |
| static YangMills::TForcingTermType | trigonometric_f3_linear |
| |
| static YangMills::TLAForcingTermType | trigonometric_f_linear = {trigonometric_f1_linear, trigonometric_f2_linear, trigonometric_f3_linear} |
| |
| static YangMills::TForcingTermType | trigonometric_f1_nonlinear |
| |
| static YangMills::TForcingTermType | trigonometric_f2_nonlinear |
| |
| static YangMills::TForcingTermType | trigonometric_f3_nonlinear |
| |
| static YangMills::TLAForcingTermType | trigonometric_f_nonlinear = {trigonometric_f1_nonlinear, trigonometric_f2_nonlinear, trigonometric_f3_nonlinear} |
| |
| static YangMills::TElectricFieldType | linear_E1 |
| |
| static YangMills::TElectricFieldType | linear_E2 |
| |
| static YangMills::TElectricFieldType | linear_E3 |
| |
| static YangMills::TLAElectricFieldType | linear_E = {linear_E1, linear_E2, linear_E3} |
| |
| static YangMills::TElectricFieldType | linear_A1 |
| |
| static YangMills::TElectricFieldType | linear_A2 |
| |
| static YangMills::TElectricFieldType | linear_A3 |
| |
| static YangMills::TLAElectricFieldType | linear_A = {linear_A1, linear_A2, linear_A3} |
| |
| static YangMills::TMagneticFieldType | linear_B1_linear |
| |
| static YangMills::TMagneticFieldType | linear_B2_linear |
| |
| static YangMills::TMagneticFieldType | linear_B3_linear |
| |
| static YangMills::TLAMagneticFieldType | linear_B_linear = {linear_B1_linear, linear_B2_linear, linear_B3_linear} |
| |
| static YangMills::TMagneticFieldType | linear_B1_nonlinear |
| |
| static YangMills::TMagneticFieldType | linear_B2_nonlinear |
| |
| static YangMills::TMagneticFieldType | linear_B3_nonlinear |
| |
| static YangMills::TLAMagneticFieldType | linear_B_nonlinear = {linear_B1_nonlinear, linear_B2_nonlinear, linear_B3_nonlinear} |
| |
| static YangMills::TElectricFieldType | linear_dtE1 |
| |
| static YangMills::TElectricFieldType | linear_dtE2 |
| |
| static YangMills::TElectricFieldType | linear_dtE3 |
| |
| static YangMills::TLAElectricFieldType | linear_dtE = {linear_dtE1, linear_dtE2, linear_dtE3} |
| |
| static YangMills::TForcingTermType | linear_f1_linear |
| |
| static YangMills::TForcingTermType | linear_f2_linear |
| |
| static YangMills::TForcingTermType | linear_f3_linear |
| |
| static YangMills::TLAForcingTermType | linear_f_linear = {linear_f1_linear, linear_f2_linear, linear_f3_linear} |
| |
| static YangMills::TForcingTermType | linear_f1_nonlinear |
| |
| static YangMills::TForcingTermType | linear_f2_nonlinear |
| |
| static YangMills::TForcingTermType | linear_f3_nonlinear |
| |
| static YangMills::TLAForcingTermType | linear_f_nonlinear = {linear_f1_nonlinear, linear_f2_nonlinear, linear_f3_nonlinear} |
| |
| static YangMills::TElectricFieldType | const_E1 |
| |
| static YangMills::TElectricFieldType | const_E2 |
| |
| static YangMills::TElectricFieldType | const_E3 |
| |
| static YangMills::TLAElectricFieldType | const_E = {const_E1, const_E2, const_E3} |
| |
| static YangMills::TElectricFieldType | const_A1 |
| |
| static YangMills::TElectricFieldType | const_A2 |
| |
| static YangMills::TElectricFieldType | const_A3 |
| |
| static YangMills::TLAElectricFieldType | const_A = {const_A1, const_A2, const_A3} |
| |
| static YangMills::TMagneticFieldType | const_B1_linear |
| |
| static YangMills::TMagneticFieldType | const_B2_linear |
| |
| static YangMills::TMagneticFieldType | const_B3_linear |
| |
| static YangMills::TLAMagneticFieldType | const_B_linear = {const_B1_linear, const_B2_linear, const_B3_linear} |
| |
| static YangMills::TMagneticFieldType | const_B1_nonlinear |
| |
| static YangMills::TMagneticFieldType | const_B2_nonlinear |
| |
| static YangMills::TMagneticFieldType | const_B3_nonlinear |
| |
| static YangMills::TLAMagneticFieldType | const_B_nonlinear = {const_B1_nonlinear, const_B2_nonlinear, const_B3_nonlinear} |
| |
| static YangMills::TElectricFieldType | const_dtE1 |
| |
| static YangMills::TElectricFieldType | const_dtE2 |
| |
| static YangMills::TElectricFieldType | const_dtE3 |
| |
| static YangMills::TLAElectricFieldType | const_dtE = {const_dtE1, const_dtE2, const_dtE3} |
| |
| static YangMills::TForcingTermType | const_f1_linear |
| |
| static YangMills::TForcingTermType | const_f2_linear |
| |
| static YangMills::TForcingTermType | const_f3_linear |
| |
| static YangMills::TLAForcingTermType | const_f_linear = {const_f1_linear, const_f2_linear, const_f3_linear} |
| |
| static YangMills::TForcingTermType | const_f1_nonlinear |
| |
| static YangMills::TForcingTermType | const_f2_nonlinear |
| |
| static YangMills::TForcingTermType | const_f3_nonlinear |
| |
| static YangMills::TLAForcingTermType | const_f_nonlinear = {const_f1_nonlinear, const_f2_nonlinear, const_f3_nonlinear} |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static YangMills::TElectricFieldType | trigonometric_E1 |
| |
| static YangMills::TElectricFieldType | trigonometric_E2 |
| |
| static YangMills::TElectricFieldType | trigonometric_E3 |
| |
| static YangMills::TLAElectricFieldType | trigonometric_E = {trigonometric_E1, trigonometric_E2, trigonometric_E3} |
| |
| static YangMills::TElectricFieldType | trigonometric_A1 |
| |
| static YangMills::TElectricFieldType | trigonometric_A2 |
| |
| static YangMills::TElectricFieldType | trigonometric_A3 |
| |
| static YangMills::TLAElectricFieldType | trigonometric_A = {trigonometric_A1, trigonometric_A2, trigonometric_A3} |
| |
| static YangMills::TMagneticFieldType | trigonometric_B1_linear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B2_linear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B3_linear |
| |
| static YangMills::TLAMagneticFieldType | trigonometric_B_linear = {trigonometric_B1_linear, trigonometric_B2_linear, trigonometric_B3_linear} |
| |
| static YangMills::TMagneticFieldType | trigonometric_B1_nonlinear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B2_nonlinear |
| |
| static YangMills::TMagneticFieldType | trigonometric_B3_nonlinear |
| |
| static YangMills::TLAMagneticFieldType | trigonometric_B_nonlinear = {trigonometric_B1_nonlinear, trigonometric_B2_nonlinear, trigonometric_B3_nonlinear} |
| |
| static YangMills::TElectricFieldType | trigonometric_dtE1 |
| |
| static YangMills::TElectricFieldType | trigonometric_dtE2 |
| |
| static YangMills::TElectricFieldType | trigonometric_dtE3 |
| |
| static YangMills::TLAElectricFieldType | trigonometric_dtE = {trigonometric_dtE1, trigonometric_dtE2, trigonometric_dtE3} |
| |
| static YangMills::TForcingTermType | trigonometric_f1_linear |
| |
| static YangMills::TForcingTermType | trigonometric_f2_linear |
| |
| static YangMills::TForcingTermType | trigonometric_f3_linear |
| |
| static YangMills::TLAForcingTermType | trigonometric_f_linear = {trigonometric_f1_linear, trigonometric_f2_linear, trigonometric_f3_linear} |
| |
| static YangMills::TForcingTermType | trigonometric_f1_nonlinear |
| |
| static YangMills::TForcingTermType | trigonometric_f2_nonlinear |
| |
| static YangMills::TForcingTermType | trigonometric_f3_nonlinear |
| |
| static YangMills::TLAForcingTermType | trigonometric_f_nonlinear = {trigonometric_f1_nonlinear, trigonometric_f2_nonlinear, trigonometric_f3_nonlinear} |
| |
| static YangMills::TElectricFieldType | linear_E1 |
| |
| static YangMills::TElectricFieldType | linear_E2 |
| |
| static YangMills::TElectricFieldType | linear_E3 |
| |
| static YangMills::TLAElectricFieldType | linear_E = {linear_E1, linear_E2, linear_E3} |
| |
| static YangMills::TElectricFieldType | linear_A1 |
| |
| static YangMills::TElectricFieldType | linear_A2 |
| |
| static YangMills::TElectricFieldType | linear_A3 |
| |
| static YangMills::TLAElectricFieldType | linear_A = {linear_A1, linear_A2, linear_A3} |
| |
| static YangMills::TMagneticFieldType | linear_B1_linear |
| |
| static YangMills::TMagneticFieldType | linear_B2_linear |
| |
| static YangMills::TMagneticFieldType | linear_B3_linear |
| |
| static YangMills::TLAMagneticFieldType | linear_B_linear = {linear_B1_linear, linear_B2_linear, linear_B3_linear} |
| |
| static YangMills::TMagneticFieldType | linear_B1_nonlinear |
| |
| static YangMills::TMagneticFieldType | linear_B2_nonlinear |
| |
| static YangMills::TMagneticFieldType | linear_B3_nonlinear |
| |
| static YangMills::TLAMagneticFieldType | linear_B_nonlinear = {linear_B1_nonlinear, linear_B2_nonlinear, linear_B3_nonlinear} |
| |
| static YangMills::TElectricFieldType | linear_dtE1 |
| |
| static YangMills::TElectricFieldType | linear_dtE2 |
| |
| static YangMills::TElectricFieldType | linear_dtE3 |
| |
| static YangMills::TLAElectricFieldType | linear_dtE = {linear_dtE1, linear_dtE2, linear_dtE3} |
| |
| static YangMills::TForcingTermType | linear_f1_linear |
| |
| static YangMills::TForcingTermType | linear_f2_linear |
| |
| static YangMills::TForcingTermType | linear_f3_linear |
| |
| static YangMills::TLAForcingTermType | linear_f_linear = {linear_f1_linear, linear_f2_linear, linear_f3_linear} |
| |
| static YangMills::TForcingTermType | linear_f1_nonlinear |
| |
| static YangMills::TForcingTermType | linear_f2_nonlinear |
| |
| static YangMills::TForcingTermType | linear_f3_nonlinear |
| |
| static YangMills::TLAForcingTermType | linear_f_nonlinear = {linear_f1_nonlinear, linear_f2_nonlinear, linear_f3_nonlinear} |
| |
| static YangMills::TElectricFieldType | const_E1 |
| |
| static YangMills::TElectricFieldType | const_E2 |
| |
| static YangMills::TElectricFieldType | const_E3 |
| |
| static YangMills::TLAElectricFieldType | const_E = {const_E1, const_E2, const_E3} |
| |
| static YangMills::TElectricFieldType | const_A1 |
| |
| static YangMills::TElectricFieldType | const_A2 |
| |
| static YangMills::TElectricFieldType | const_A3 |
| |
| static YangMills::TLAElectricFieldType | const_A = {const_A1, const_A2, const_A3} |
| |
| static YangMills::TMagneticFieldType | const_B1_linear |
| |
| static YangMills::TMagneticFieldType | const_B2_linear |
| |
| static YangMills::TMagneticFieldType | const_B3_linear |
| |
| static YangMills::TLAMagneticFieldType | const_B_linear = {const_B1_linear, const_B2_linear, const_B3_linear} |
| |
| static YangMills::TMagneticFieldType | const_B1_nonlinear |
| |
| static YangMills::TMagneticFieldType | const_B2_nonlinear |
| |
| static YangMills::TMagneticFieldType | const_B3_nonlinear |
| |
| static YangMills::TLAMagneticFieldType | const_B_nonlinear = {const_B1_nonlinear, const_B2_nonlinear, const_B3_nonlinear} |
| |
| static YangMills::TElectricFieldType | const_dtE1 |
| |
| static YangMills::TElectricFieldType | const_dtE2 |
| |
| static YangMills::TElectricFieldType | const_dtE3 |
| |
| static YangMills::TLAElectricFieldType | const_dtE = {const_dtE1, const_dtE2, const_dtE3} |
| |
| static YangMills::TForcingTermType | const_f1_linear |
| |
| static YangMills::TForcingTermType | const_f2_linear |
| |
| static YangMills::TForcingTermType | const_f3_linear |
| |
| static YangMills::TLAForcingTermType | const_f_linear = {const_f1_linear, const_f2_linear, const_f3_linear} |
| |
| static YangMills::TForcingTermType | const_f1_nonlinear |
| |
| static YangMills::TForcingTermType | const_f2_nonlinear |
| |
| static YangMills::TForcingTermType | const_f3_nonlinear |
| |
| static YangMills::TLAForcingTermType | const_f_nonlinear = {const_f1_nonlinear, const_f2_nonlinear, const_f3_nonlinear} |
| |
| static const double | PI = boost::math::constants::pi<double>() |
| |
| static Stokes::VelocityType | trigonometric_u |
| |
| static Stokes::VorticityType | trigonometric_curl_u |
| |
| static Stokes::PressureType | trigonometric_p |
| |
| static Stokes::PressureGradientType | trigonometric_grad_p |
| |
| static Stokes::ForcingTermType | trigonometric_f |
| |
| static Stokes::ForcingTermType | trigonometric_curl_f |
| |
| static Stokes::ViscosityType | trigonometric_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | linear_u |
| |
| static Stokes::VorticityType | linear_curl_u |
| |
| static Stokes::PressureType | linear_p |
| |
| static Stokes::PressureGradientType | linear_grad_p |
| |
| static Stokes::ForcingTermType | linear_f |
| |
| static Stokes::ForcingTermType | linear_curl_f |
| |
| static Stokes::ViscosityType | linear_nu = Stokes::ViscosityType(1.) |
| |
| static Stokes::VelocityType | field_u |
| |
| static Stokes::VorticityType | field_curl_u |
| |
| static Stokes::PressureType | field_p |
| |
| static Stokes::PressureGradientType | field_grad_p |
| |
| static Stokes::ForcingTermType | field_f |
| |
| static Stokes::ForcingTermType | field_curl_f |
| |
| static Stokes::ViscosityType | field_nu = Stokes::ViscosityType(1.) |
| |
| constexpr int | dimspace = 3 |
| | Dimension, and generic types for vector in correct dimension (makes it easier to translate a code between 2D and 3D)
|
| |
| static const std::vector< VectorRd > | basisRd = { VectorRd(1., 0., 0.), VectorRd(0., 1., 0.), VectorRd(0., 0., 1.) } |
| |
| static std::function< Eigen::MatrixXd(const Eigen::MatrixXd &)> | symmetrise_matrix = [](const Eigen::MatrixXd & x)->Eigen::MatrixXd { return 0.5*(x+x.transpose());} |
| | Function to symmetrise a matrix (useful together with transform_values_quad)
|
| |
| static std::function< Eigen::MatrixXd(const Eigen::MatrixXd &)> | skew_symmetrise_matrix = [](const Eigen::MatrixXd & x)->Eigen::MatrixXd { return 0.5*(x-x.transpose());} |
| | Function to skew-symmetrise a matrix (useful together with transform_values_quad)
|
| |
| std::map< std::string, SolverName > | map_solver |
| | Map to associate to each lowercase name a solver.
|
| |
| std::map< SolverName, std::string > | map_realname |
| | Map to associate to each solver its proper name.
|
| |
| std::map< SolverName, size_t > | map_id |
| |
| static const CellSelection | allcells = [](const Cell &)->bool {return true;} |
| |
| static constexpr size_t | MAX_DOE_CELL = 14 |
| | Maximum degree of the cell quadrature rules.
|
| |
| static constexpr size_t | MAX_DOE_FACE = 20 |
| | Maximum degree of the face quadrature rules.
|
| |
| static constexpr size_t | MAX_DOE_EDGE = 20 |
| | Maximum degree of the edge quadrature rules.
|
| |