HArD::Core3D
Hybrid Arbitrary Degree::Core 3D - Library to implement 3D schemes with vertex, edge, face and cell polynomials as unknowns
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Attributes | List of all members
HArDCore3D::GradientBasis< BasisType > Class Template Reference

Basis for the space of gradients of polynomials. More...

#include <basis.hpp>

Public Types

typedef BasisType::GradientValue FunctionValue
 
typedef void GradientValue
 
typedef void CurlValue
 
typedef void DivergenceValue
 
typedef void HessianValue
 
typedef BasisType::GeometricSupport GeometricSupport
 
typedef BasisType AncestorType
 

Public Member Functions

 GradientBasis (const BasisType &basis)
 Constructor.
 
size_t dimension () const
 Compute the dimension of the basis.
 
FunctionValue function (size_t i, const VectorRd &x) const
 Evaluate the i-th basis function at point x.
 
constexpr const BasisTypeancestor () const
 Return the ancestor (basis that the gradient was taken of)
 

Static Public Attributes

static constexpr const TensorRankE tensorRank = (BasisType::tensorRank==Scalar ? Vector : Matrix)
 
static constexpr const bool hasAncestor = true
 
static const bool hasFunction = true
 
static const bool hasGradient = false
 
static const bool hasCurl = false
 
static const bool hasDivergence = false
 
static const bool hasHessian = false
 
static const bool hasCurlCurl = false
 

Detailed Description

template<typename BasisType>
class HArDCore3D::GradientBasis< BasisType >

Basis for the space of gradients of polynomials.

To construct a basis of G^k, this assumes that the scalar basis it is constructed from is an ancestor basis of P^{k+1}/P^0, space of polynomials of degree k+1 without trivial polynomial with zero gradient (e.g. polynomials with zero average, or a hierarchical basis of P^{k+1} in which we have removed the first, constant, polynomial). This can also be used to create a family of gradients (not necessarily linearly independent, if the ancestor basis is not a basis of P^{k+1}/P^0)


The documentation for this class was generated from the following file: