HArD::Core2D
Hybrid Arbitrary Degree::Core 2D - Library to implement 2D schemes with edge and cell polynomials as unknowns
Loading...
Searching...
No Matches
rtn-pk-pk-pk.hpp
Go to the documentation of this file.
1#ifndef RTN_PK_PK_PK_HPP
2#define RTN_PK_PK_PK_HPP
3
4#include <boost/fusion/include/map.hpp>
5
6#include "hypre.hpp"
7
8#include <globaldofspace.hpp>
9
10namespace HArDCore2D {
11
12 namespace DSL {
13
14 class RTNPkPkPk: public HYPRE {
15 public:
16 typedef boost::fusion::map<boost::fusion::pair<RolyCellType, std::string>,
17 boost::fusion::pair<RolyComplCellType, std::string> > CellDofsMapType;
20 const Mesh & mesh,
21 size_t degree,
22 const BoundaryConditions & bc,
23 const HYPREParameters & parameters
24 );
25
27 Eigen::VectorXd interpolate(
28 const VelocityType & u,
29 const PressureType & p
30 ) const;
31
32
35 {
36 return m_cell_dofs_map;
37 }
38
40 Eigen::VectorXd extendCellDofs(const Eigen::VectorXd & vh) const;
41
44 return *m_pkpo_pk;
45 }
46
50 const Eigen::VectorXd & uT_old,
51 const Eigen::VectorXd & bT_old,
52 const size_t cell_degree,
53 const double viscosity,
54 const double magnetic_diffusivity,
55 const double current_time) const;
56
59 const Eigen::VectorXd & uT_old,
60 const Eigen::VectorXd & bT_old,
61 const size_t cell_degree,
62 const double viscosity,
63 const double magnetic_diffusivity,
64 const double current_time) const;
65 private:
67 template<typename F>
68 Eigen::VectorXd _interpolate_velocity(
69 const F & v,
70 const InterpolateParameters & parameters = {}
71 ) const;
72
73 void _construct_local_operators(size_t iT);
74 void _construct_stabilization(size_t iT);
75 std::pair<Eigen::MatrixXd, Eigen::VectorXd> _velocity_pressure_coupling(
76 size_t iT,
78 const Eigen::VectorXd & uT_old,
79 const Eigen::VectorXd & pT_old,
80 const double & current_time
81 );
82
83 std::pair<Eigen::MatrixXd, Eigen::VectorXd> _magnetic_field_magnetic_pressure_coupling(
84 size_t iT,
86 const Eigen::VectorXd & bT_old,
87 const Eigen::VectorXd & rT_old,
88 const double & current_time
89 );
90
91 Eigen::MatrixXd _forcing_terms(
92 size_t iT,
94 const double current_time = 0.
95 );
96
97 std::pair<Eigen::MatrixXd, Eigen::VectorXd> _linearized_convective_term(
98 size_t iT,
99 const Eigen::VectorXd & uT_old
100 );
101
102 std::tuple<Eigen::MatrixXd, Eigen::MatrixXd, Eigen::VectorXd> _linearized_convective_mixed_term(
103 size_t iT,
104 const Eigen::VectorXd & wT_old,
105 const Eigen::VectorXd & vT_old
106 );
107
108 std::pair<Eigen::MatrixXd, Eigen::VectorXd> _convective_stabilization_term(
109 size_t iT,
110 const Eigen::VectorXd & uT_old,
111 const Eigen::VectorXd & bT_old,
113 const double current_time
114 );
115
116 std::pair<Eigen::MatrixXd, Eigen::VectorXd> _magnetic_convective_stabilization_term(
117 size_t iT,
118 const Eigen::VectorXd & uT_old,
119 const Eigen::VectorXd & bT_old,
121 const double current_time
122 );
123
124 CellDofsMapType m_cell_dofs_map;
125 GlobalDOFSpace m_rtn_dof_table;
126 std::unique_ptr<DiscreteSpace> m_pkpo_pk;
127 };
128
129 //------------------------------------------------------------------------------
130
131 template<typename F>
132 Eigen::VectorXd RTNPkPkPk::_interpolate_velocity(
133 const F & v,
134 const InterpolateParameters & parameters
135 ) const
136 {
137 Eigen::VectorXd vh = Eigen::VectorXd::Zero(m_velocity_space->dimension());
138
139 // Degrees of quadrature rules
140 int doe_cell = (parameters.doe_cell > 0 ? doe_cell : 2 * m_degree + 1);
141 int doe_edge = (parameters.doe_edge > 0 ? doe_edge : 2 * m_degree + 3);
142
143 // Interpolate at edges
144 std::function<void(size_t, size_t)> interpolate_edges
145 = [this, v, &vh, &doe_edge](size_t start, size_t end)->void
146 {
147 const auto & edge_dofs = m_velocity_space->get<PolynEdgeType>("EdgeDOFs");
148
149 for (size_t iE = start; iE < end; iE++) {
150 const Edge & E = *this->m_velocity_space->mesh().edge(iE);
151 const auto & edge_dofs_E = edge_dofs[E.global_index()];
152 QuadratureRule quad = generate_quadrature_rule(E, doe_edge);
153 auto edge_dofs_quad = evaluate_quad<Function>::compute(*edge_dofs_E, quad);
154 vh.segment(this->m_velocity_space->globalOffset(E), this->m_velocity_space->numberOfLocalEdgeDofs())
155 = l2_projection(v, *edge_dofs_E, quad, edge_dofs_quad, GramMatrix(E, *edge_dofs_E));
156 } // for iE
157 };
158 parallel_for(m_velocity_space->mesh().n_edges(), interpolate_edges, parameters.use_threads);
159
160 // Interpolate at cells
161 std::function<void(size_t, size_t)> interpolate_cells
162 = [this, &vh, v, &doe_cell, &doe_edge](size_t start, size_t end)->void
163 {
164 const auto & rtn_edge_dofs = m_velocity_space->get<PolyEdgeType>("RTNEdgeDOFs");
165 const auto & roly_cell_dofs = m_velocity_space->get<RolyCellType>("RolyCellDOFs");
166 const auto & roly_compl_cell_dofs = m_velocity_space->get<RolyComplCellType>("RolyComplCellDOFs");
167
168 // Dimensions
169 size_t dim_rtn_cell_dofs = LocalSpaceDimensions<PolynCellType>::get(m_degree - 1);
170 size_t dim_rtn_edge_dofs = LocalSpaceDimensions<PolyEdgeType>::get(m_degree);
171 size_t dim_roly_cell_dofs = LocalSpaceDimensions<RolyCellType>::get(m_degree);
172 size_t dim_roly_compl_cell_dofs = LocalSpaceDimensions<RolyComplCellType>::get(m_degree + 1);
173 size_t dim_cell_dofs = dim_roly_cell_dofs + dim_roly_compl_cell_dofs;
174
175 for (size_t iT = start; iT < end; iT++) {
176 const Cell & T = *this->m_velocity_space->mesh().cell(iT);
177
178 // Interpolator
179 Eigen::MatrixXd MIT = Eigen::MatrixXd::Zero(dim_cell_dofs, dim_cell_dofs);
180 Eigen::VectorXd bIT = Eigen::VectorXd(dim_cell_dofs);
181
182 MonomialCellIntegralsType int_mono_cell = IntegrateCellMonomials(T, 2 * (this->m_degree + 1));
183 QuadratureRule quad = generate_quadrature_rule(T, doe_cell);
184
185 if (dim_rtn_cell_dofs > 0) {
186 const auto & rtn_cell_dofs = m_velocity_space->get<PolynCellType>("RTNCellDOFs")[iT];
187
188 MIT.block(m_rtn_dof_table.localOffset(T), 0, dim_rtn_cell_dofs, dim_roly_cell_dofs)
189 = GramMatrix(T, *rtn_cell_dofs, *roly_cell_dofs[iT], int_mono_cell);
190 MIT.block(m_rtn_dof_table.localOffset(T), dim_roly_cell_dofs, dim_rtn_cell_dofs, dim_roly_compl_cell_dofs)
191 = GramMatrix(T, *rtn_cell_dofs, *roly_compl_cell_dofs[iT], int_mono_cell);
192
193 auto rtn_cell_dofs_quad = evaluate_quad<Function>::compute(*rtn_cell_dofs, quad);
194 bIT.segment(m_rtn_dof_table.localOffset(T), dim_rtn_cell_dofs)
195 = l2_projection(v, *rtn_cell_dofs, quad, rtn_cell_dofs_quad, GramMatrix(T, *rtn_cell_dofs, int_mono_cell));
196 } // if
197
198 for (size_t iE = 0; iE < T.n_edges(); iE++) {
199 const Edge & E = *T.edge(iE);
200 auto nTE = T.edge_normal(iE);
201
202 const auto & rtn_edge_dofs_E = rtn_edge_dofs[E.global_index()];
203
204 auto normal_component = [&nTE](const VectorRd & w)->double { return w.dot(nTE); };
205
206 QuadratureRule quad_E = generate_quadrature_rule(E, doe_edge);
207 auto roly_cell_dofs_quad
208 = transform_values_quad<double>( evaluate_quad<Function>::compute(*roly_cell_dofs[iT], quad_E),
209 normal_component );
210 auto roly_compl_cell_dofs_quad
211 = transform_values_quad<double>( evaluate_quad<Function>::compute(*roly_compl_cell_dofs[iT], quad_E),
212 normal_component );
213
214 auto rtn_edge_dofs_quad = evaluate_quad<Function>::compute(*rtn_edge_dofs[E.global_index()], quad_E);
215
216 std::function<double(const VectorRd &)> evaluate_normal_component
217 = [v, &nTE](const VectorRd & x) { return v(x).dot(nTE); };
218
219 MIT.block(m_rtn_dof_table.localOffset(T, E), 0, dim_rtn_edge_dofs, dim_roly_cell_dofs)
220 = compute_gram_matrix(rtn_edge_dofs_quad, roly_cell_dofs_quad, quad_E);
221 MIT.block(m_rtn_dof_table.localOffset(T, E), dim_roly_cell_dofs, dim_rtn_edge_dofs, dim_roly_compl_cell_dofs)
222 = compute_gram_matrix(rtn_edge_dofs_quad, roly_compl_cell_dofs_quad, quad_E);
223
224 bIT.segment(m_rtn_dof_table.localOffset(T, E), dim_rtn_edge_dofs)
225 = l2_projection(evaluate_normal_component, *rtn_edge_dofs_E, quad_E, rtn_edge_dofs_quad, GramMatrix(E, *rtn_edge_dofs_E));
226 } // for iE
227
228 vh.segment(this->m_velocity_space->globalOffset(T), this->m_velocity_space->numberOfLocalCellDofs())
229 = MIT.fullPivLu().solve(bIT);
230 } // for iT
231 };
232 parallel_for(m_velocity_space->mesh().n_cells(), interpolate_cells, m_use_threads);
233
234 return vh;
235 }
236
237 } // namespace DSL
238
239} // namespace HArDCore2D
240
241#endif
The BoundaryConditions class provides definition of boundary conditions.
Definition BoundaryConditions.hpp:45
Definition discrete-space.hpp:20
std::function< VectorRd(const VectorRd &)> VelocityType
Definition hypre.hpp:37
size_t degree() const
Returns the degree.
Definition hypre.hpp:64
const Mesh & mesh() const
Returns the mesh.
Definition hypre.hpp:166
std::unique_ptr< DiscreteSpace > m_velocity_space
Definition hypre.hpp:366
size_t m_degree
Definition hypre.hpp:345
std::function< double(const VectorRd &)> PressureType
Definition hypre.hpp:39
bool m_use_threads
Definition hypre.hpp:348
Eigen::VectorXd extendCellDofs(const Eigen::VectorXd &vh) const
Extend cell DOFs from to .
const DiscreteSpace & extendedDofsSpace() const
Return the discrete space corresponding to the extended DOFs.
Definition rtn-pk-pk-pk.hpp:43
double convective_stabilization_parameter(size_t iT, const HArDCore2D::NavierStokesSolutions::IExactSolution *isolution, const size_t cell_degree, const double viscosity, const Eigen::VectorXd uT_old, const double current_time=0.) const
Evaluates convective stabilisation parameter.
Definition rtn-pk-pk-pk.cpp:763
RTNPkPkPk(const Mesh &mesh, size_t degree, const BoundaryConditions &bc, const HYPREParameters &parameters)
Constructor.
boost::fusion::map< boost::fusion::pair< RolyCellType, std::string >, boost::fusion::pair< RolyComplCellType, std::string > > CellDofsMapType
Definition rtn-pk-pk-pk.hpp:17
const CellDofsMapType & cellDofsMap() const
Return cell DOFs map.
Definition rtn-pk-pk-pk.hpp:34
double magnetic_convective_stabilization_parameter(size_t iT, const HArDCore2D::NavierStokesSolutions::IExactSolution *isolution, const Eigen::VectorXd &uT_old, const Eigen::VectorXd &bT_old, const size_t cell_degree, const double viscosity, const double magnetic_diffusivity, const double current_time) const
Definition rtn-pk-pk-pk.cpp:1188
Eigen::VectorXd interpolate(const VelocityType &u, const PressureType &p) const
Interpolate both velocity and pressure.
Base class for global DOF spaces. Provides functions to manipulate global DOFs (the local version bei...
Definition globaldofspace.hpp:16
Definition Mesh2D.hpp:26
end
Definition compute_eigs.m:12
Eigen::Vector2d VectorRd
Definition basis.hpp:55
Eigen::MatrixXd compute_gram_matrix(const boost::multi_array< VectorRd, 2 > &B1, const boost::multi_array< double, 2 > &B2, const QuadratureRule &qr)
Compute the Gram-like matrix given a family of vector-valued and one of scalar-valued functions by te...
Definition basis.cpp:239
Eigen::VectorXd l2_projection(const std::function< typename BasisType::FunctionValue(const VectorRd &)> &f, const BasisType &basis, QuadratureRule &quad, const boost::multi_array< typename BasisType::FunctionValue, 2 > &basis_quad, const Eigen::MatrixXd &mass_basis=Eigen::MatrixXd::Zero(1, 1))
Compute the L2-projection of a function.
Definition basis.hpp:3023
static boost::multi_array< typename detail::basis_evaluation_traits< BasisType, BasisFunction >::ReturnValue, 2 > compute(const BasisType &basis, const QuadratureRule &quad)
Generic basis evaluation.
Definition basis.hpp:2425
size_t localOffset(const Edge &E, const Vertex &V) const
Returns the local offset of the vertex V with respect to the edge E.
Definition localdofspace.hpp:143
static void parallel_for(unsigned nb_elements, std::function< void(size_t start, size_t end)> functor, bool use_threads=true, unsigned nb_threads_max=1e9)
Generic function to execute threaded processes.
Definition parallel_for.hpp:42
Polytope< DIMENSION > Cell
Definition Polytope2D.hpp:151
Polytope< 1 > Edge
A Face is a Polytope with object_dim = DIMENSION - 1.
Definition Polytope2D.hpp:147
std::vector< QuadratureNode > QuadratureRule
Definition quadraturerule.hpp:55
std::unordered_map< VectorZd, double, VecHash > MonomialCellIntegralsType
Type for list of integrals of monomials.
Definition GMpoly_cell.hpp:53
MonomialCellIntegralsType IntegrateCellMonomials(const Cell &T, const size_t maxdeg)
Compute all integrals on a cell of monomials up to a total degree, using vertex values.
Definition GMpoly_cell.cpp:7
Eigen::MatrixXd GramMatrix(const Cell &T, const MonomialScalarBasisCell &basis1, const MonomialScalarBasisCell &basis2, MonomialCellIntegralsType mono_int_map={})
Computes the Gram Matrix of a pair of local scalar monomial bases.
Definition GMpoly_cell.cpp:86
QuadratureRule generate_quadrature_rule(const Cell &T, const int doe, const bool force_split)
Generate quadrature rule on mesh element.
Definition quadraturerule.cpp:10
if(strcmp(field, 'real')) % real valued entries T
Definition mmread.m:93
TensorizedVectorFamily< PolyCellType, dimspace > PolynCellType
Definition discrete-space-descriptor.hpp:23
TensorizedVectorFamily< Family< MonomialScalarBasisEdge >, dimspace > PolynEdgeType
Definition discrete-space-descriptor.hpp:24
Family< RolyComplBasisCell > RolyComplCellType
Definition discrete-space-descriptor.hpp:30
Family< CurlBasis< ShiftedBasis< MonomialScalarBasisCell > > > RolyCellType
Definition discrete-space-descriptor.hpp:29
Family< MonomialScalarBasisEdge > PolyEdgeType
Definition discrete-space-descriptor.hpp:22
Definition ddr-klplate.hpp:27
static auto v
Definition ddrcore-test.hpp:32
Definition hypre.hpp:21
Definition hho-interpolate.hpp:15
Evaluate a basis at quadrature nodes. 'BasisFunction' (=Function, Gradient, Curl, Divergence,...
Definition basis.hpp:2421