HArD::Core3D
Hybrid Arbitrary Degree::Core 3D - Library to implement 3D schemes with vertex, edge, face and cell polynomials as unknowns
laxdiv.hpp
Go to the documentation of this file.
1 #ifndef LAXDIV_HPP
2 #define LAXDIV_HPP
3 
4 #include <globaldofspace.hpp>
5 #include <xdiv.hpp>
6 #include <liealgebra.hpp>
7 
8 namespace HArDCore3D
9 {
16 
19  class LAXDiv : public GlobalDOFSpace
20  {
21  public:
22 
23  typedef std::function<Eigen::Vector3d(const Eigen::Vector3d &)> FunctionType;
24  typedef std::vector<FunctionType> LAFunctionType;
25 
28  {
30  const Eigen::MatrixXd & _divergence,
31  const Eigen::MatrixXd & _divergence_rhs,
32  const Eigen::MatrixXd & _potential
33  )
34  : divergence(_divergence),
35  divergence_rhs(_divergence_rhs),
36  potential(_potential)
37  {
38  // Do nothing
39  }
40 
41  Eigen::MatrixXd divergence;
42  Eigen::MatrixXd divergence_rhs;
43  Eigen::MatrixXd potential;
44  };
45 
47  LAXDiv(const LieAlgebra & lie_algebra, const XDiv & xdiv, bool use_threads = true, std::ostream & output = std::cout);
48 
50  const Mesh & mesh() const
51  {
52  return m_xdiv.mesh();
53  }
54 
56  const size_t & degree() const
57  {
58  return m_xdiv.degree();
59  }
60 
62  Eigen::VectorXd interpolate(
63  const LAFunctionType & v,
64  const int doe_cell = -1,
65  const int doe_face = -1
66  ) const;
67 
69  inline const LocalOperators & cellOperators(size_t iT) const
70  {
71  return *m_cell_operators[iT];
72  }
73 
75  inline const LocalOperators & cellOperators(const Cell & T) const
76  {
77  return * m_cell_operators[T.global_index()];
78  }
79 
81  inline const DDRCore::CellBases & cellBases(size_t iT) const
82  {
83  return m_xdiv.cellBases(iT);
84  }
85 
87  inline const DDRCore::CellBases & cellBases(const Cell & T) const
88  {
89  return m_xdiv.cellBases(T.global_index());
90  }
91 
93  inline const DDRCore::FaceBases & faceBases(size_t iF) const
94  {
95  return m_xdiv.faceBases(iF);
96  }
97 
99  inline const DDRCore::FaceBases & faceBases(const Face & F) const
100  {
101  return m_xdiv.faceBases(F.global_index());
102  }
103 
105  // The mass matrix of P^k(T)^3 is the most expensive mass matrix in the calculation of this norm, which
106  // is why there's the option of passing it as parameter if it's been already pre-computed when the norm is called.
107  Eigen::MatrixXd computeL2Product(
108  const size_t iT,
109  const double & penalty_factor = 1.,
110  const Eigen::MatrixXd & mass_Pk3_T = Eigen::MatrixXd::Zero(1,1),
111  const IntegralWeight & weight = IntegralWeight(1.)
112  ) const;
113 
115  Eigen::MatrixXd computeL2ProductCurl(
116  const size_t iT,
117  const XCurl & x_curl,
118  const std::string & side,
119  const double & penalty_factor = 1.,
120  const Eigen::MatrixXd & mass_Pk3_T = Eigen::MatrixXd::Zero(1,1),
121  const IntegralWeight & weight = IntegralWeight(1.)
122  ) const;
123 
124  protected:
125  LocalOperators _compute_cell_divergence_potential(size_t iT);
126 
128  const XDiv & m_xdiv;
130  std::ostream & m_output;
131 
132  // Containers for local operators
133  std::vector<std::unique_ptr<LocalOperators> > m_cell_operators;
134  };
135 } // end of namespace HArDCore3D
136 
137 #endif
Base class for global DOF spaces. Provides functions to manipulate global DOFs (the local version bei...
Definition: globaldofspace.hpp:16
Discrete Lie algebra valued Hdiv space: local operators, L2 product and global interpolator.
Definition: laxdiv.hpp:20
Lie algebra class: mass matrix, structure constants and Lie bracket.
Definition: liealgebra.hpp:17
Discrete Hcurl space: local operators, L2 product and global interpolator.
Definition: xcurl.hpp:19
Discrete Hdiv space: local operators, L2 product and global interpolator.
Definition: xdiv.hpp:20
Class to describe a mesh.
Definition: MeshND.hpp:17
const size_t & degree() const
Return the polynomial degree.
Definition: xdiv.hpp:54
const Mesh & mesh() const
Return the mesh.
Definition: xdiv.hpp:48
const DDRCore::FaceBases & faceBases(size_t iF) const
Return face bases for the face of index iF.
Definition: xdiv.hpp:92
const DDRCore::CellBases & cellBases(size_t iT) const
Return cell bases for the face of index iT.
Definition: xdiv.hpp:80
bool use_threads
Definition: HHO_DiffAdvecReac.hpp:47
const LieAlgebra & m_lie_algebra
Definition: laxdiv.hpp:127
std::ostream & m_output
Definition: laxdiv.hpp:130
LAXDiv(const LieAlgebra &lie_algebra, const XDiv &xdiv, bool use_threads=true, std::ostream &output=std::cout)
Constructor.
Definition: laxdiv.cpp:12
const LocalOperators & cellOperators(const Cell &T) const
Return cell operators for cell T.
Definition: laxdiv.hpp:75
const DDRCore::FaceBases & faceBases(const Face &F) const
Return cell bases for face F.
Definition: laxdiv.hpp:99
Eigen::MatrixXd divergence
Definition: laxdiv.hpp:41
const DDRCore::CellBases & cellBases(size_t iT) const
Return cell bases for the face of index iT.
Definition: laxdiv.hpp:81
Eigen::MatrixXd divergence_rhs
Definition: laxdiv.hpp:42
const size_t & degree() const
Return the polynomial degree.
Definition: laxdiv.hpp:56
std::function< Eigen::Vector3d(const Eigen::Vector3d &)> FunctionType
Definition: laxdiv.hpp:23
Eigen::VectorXd interpolate(const LAFunctionType &v, const int doe_cell=-1, const int doe_face=-1) const
Interpolator of a continuous function.
Definition: laxdiv.cpp:51
Eigen::MatrixXd computeL2ProductCurl(const size_t iT, const XCurl &x_curl, const std::string &side, const double &penalty_factor=1., const Eigen::MatrixXd &mass_Pk3_T=Eigen::MatrixXd::Zero(1, 1), const IntegralWeight &weight=IntegralWeight(1.)) const
Compute the matrix of the (weighted) L2-product as 'computeL2Product', with application of the discre...
Definition: laxdiv.cpp:101
const LocalOperators & cellOperators(size_t iT) const
Return cell operators for the cell of index iT.
Definition: laxdiv.hpp:69
bool m_use_threads
Definition: laxdiv.hpp:129
std::vector< FunctionType > LAFunctionType
Definition: laxdiv.hpp:24
Eigen::MatrixXd potential
Definition: laxdiv.hpp:43
LocalOperators(const Eigen::MatrixXd &_divergence, const Eigen::MatrixXd &_divergence_rhs, const Eigen::MatrixXd &_potential)
Definition: laxdiv.hpp:29
const Mesh & mesh() const
Return the mesh.
Definition: laxdiv.hpp:50
const XDiv & m_xdiv
Definition: laxdiv.hpp:128
Eigen::MatrixXd computeL2Product(const size_t iT, const double &penalty_factor=1., const Eigen::MatrixXd &mass_Pk3_T=Eigen::MatrixXd::Zero(1, 1), const IntegralWeight &weight=IntegralWeight(1.)) const
Compute the matrix of the (weighted) L2-product for the cell of index iT.
Definition: laxdiv.cpp:87
const DDRCore::FaceBases & faceBases(size_t iF) const
Return face bases for the face of index iF.
Definition: laxdiv.hpp:93
const DDRCore::CellBases & cellBases(const Cell &T) const
Return cell bases for cell T.
Definition: laxdiv.hpp:87
LocalOperators _compute_cell_divergence_potential(size_t iT)
Definition: laxdiv.cpp:70
std::vector< std::unique_ptr< LocalOperators > > m_cell_operators
Definition: laxdiv.hpp:133
Definition: ddr-magnetostatics.hpp:40
MeshND::Face< 2 > Face
Definition: Mesh2D.hpp:12
MeshND::Cell< 2 > Cell
Definition: Mesh2D.hpp:13
Structure to store element bases.
Definition: ddrcore.hpp:86
Structure to store face bases.
Definition: ddrcore.hpp:105
Structure for weights (scalar, at the moment) in integral.
Definition: integralweight.hpp:36
A structure to store local operators (divergence and potential)
Definition: laxdiv.hpp:28