HArD::Core3D
Hybrid Arbitrary Degree::Core 3D - Library to implement 3D schemes with vertex, edge, face and cell polynomials as unknowns
lasxcurl.hpp
Go to the documentation of this file.
1 #ifndef LASXCURL_HPP
2 #define LASXCURL_HPP
3 
4 #include <sxcurl.hpp>
5 #include <liealgebra.hpp>
6 #include <unsupported/Eigen/KroneckerProduct>
7 
8 namespace HArDCore3D
9 {
16 
17  class LASXCurl : public VariableDOFSpace
18  {
19  public:
20  typedef std::function<Eigen::Vector3d(const Eigen::Vector3d &)> FunctionType;
21  typedef std::vector<FunctionType> LAFunctionType;
22 
24 
26  {
28  const Eigen::MatrixXd & _serendipity,
29  const Eigen::MatrixXd & _extension,
30  const Eigen::MatrixXd & _reduction
31  )
32  : serendipity(_serendipity),
33  extension(_extension),
34  reduction(_reduction)
35  {
36  // Do nothing
37  }
38 
39  Eigen::MatrixXd serendipity;
40  Eigen::MatrixXd extension;
41  Eigen::MatrixXd reduction;
42  };
43 
45  LASXCurl(const LieAlgebra & lie_algebra, const SXCurl & sx_curl, bool use_threads = true, std::ostream & output = std::cout);
46 
48  const Mesh & mesh() const
49  {
50  return m_sxcurl.mesh();
51  }
52 
54  const size_t & degree() const
55  {
56  return m_sxcurl.degree();
57  }
58 
60  inline const LieAlgebra & lieAlg() const
61  {
62  return m_lie_algebra;
63  }
64 
66  const SerendipityProblem & serPro() const
67  {
68  return m_sxcurl.serPro();
69  }
70 
72  Eigen::VectorXd interpolate(
73  const LAFunctionType & v,
74  const int doe_cell = -1,
75  const int doe_face = -1,
76  const int doe_edge = -1
77  ) const;
78 
79  //---------------------------------//
80  //---- Lie algebra operators-------//
81 
82  inline const Eigen::VectorXd LaxcurlI(size_t iG, Eigen::VectorXd & v) const
83  {
84  return Eigen::Map<Eigen::VectorXd,0,Eigen::InnerStride<>>(v.data()+iG, m_sxcurl.dimension(),Eigen::InnerStride<>(m_lie_algebra.dimension()));
85  }
86 
87  //---------------------------------//
88  //---- Face transfer operators-----//
89 
91  inline const Eigen::MatrixXd & ScurlFace(size_t iF) const
92  {
93  return (*m_face_transfer_operators[iF]).serendipity;
94  }
95 
97  inline const Eigen::MatrixXd & EcurlFace(size_t iF) const
98  {
99  return (*m_face_transfer_operators[iF]).extension;
100  }
101 
103  inline const Eigen::MatrixXd & RcurlFace(size_t iF) const
104  {
105  return (*m_face_transfer_operators[iF]).reduction;
106  }
107 
109  inline const Eigen::MatrixXd & ScurlFace(const Face & F) const
110  {
111  return ScurlFace(F.global_index());
112  }
113 
115  inline const Eigen::MatrixXd & EcurlFace(const Face & F) const
116  {
117  return EcurlFace(F.global_index());
118  }
119 
121  inline const Eigen::MatrixXd & RcurlFace(const Face & F) const
122  {
123  return RcurlFace(F.global_index());
124  }
125 
126  //----------------------------------//
127  //---- Cell transfer operators -----//
129  inline const Eigen::MatrixXd & ScurlCell(size_t iT) const
130  {
131  return (*m_cell_transfer_operators[iT]).serendipity;
132  }
133 
135  inline const Eigen::MatrixXd & EcurlCell(size_t iT) const
136  {
137  return (*m_cell_transfer_operators[iT]).extension;
138  }
139 
141  inline const Eigen::MatrixXd & RcurlCell(size_t iT) const
142  {
143  return (*m_cell_transfer_operators[iT]).reduction;
144  }
145 
147  inline const Eigen::MatrixXd & ScurlCell(const Cell & T) const
148  {
149  return ScurlCell(T.global_index());
150  }
151 
153  inline const Eigen::MatrixXd & EcurlCell(const Cell & T) const
154  {
155  return EcurlCell(T.global_index());
156  }
157 
159  inline const Eigen::MatrixXd & RcurlCell(const Cell & T) const
160  {
161  return RcurlCell(T.global_index());
162  }
163 
164  //-----------------------------------------------------------------//
165  //---- Full curl and potential reconstructions, and L2 product ----//
166 
168  inline const Eigen::MatrixXd faceCurl(size_t iF) const
169  {
170  Eigen::MatrixXd id = Eigen::MatrixXd::Identity(m_lie_algebra.dimension(), m_lie_algebra.dimension());
171  return Eigen::KroneckerProduct(m_sxcurl.faceCurl(iF), id);
172  }
173 
175  inline const Eigen::MatrixXd faceCurl(const Face & F) const
176  {
177  return faceCurl(F.global_index());
178  }
179 
181  inline const Eigen::MatrixXd facePotential(size_t iF) const
182  {
183  Eigen::MatrixXd id = Eigen::MatrixXd::Identity(m_lie_algebra.dimension(), m_lie_algebra.dimension());
184  return Eigen::KroneckerProduct(m_sxcurl.facePotential(iF), id);
185  }
186 
188  inline const Eigen::MatrixXd facePotential(const Face & F) const
189  {
190  return facePotential(F.global_index());
191  }
192 
194  inline const Eigen::MatrixXd cellCurl(size_t iT) const
195  {
196  Eigen::MatrixXd id = Eigen::MatrixXd::Identity(m_lie_algebra.dimension(), m_lie_algebra.dimension());
197  return Eigen::KroneckerProduct(m_sxcurl.cellCurl(iT), id);
198  }
199 
201  inline const Eigen::MatrixXd cellCurl(const Cell & T) const
202  {
203  return cellCurl(T.global_index());
204  }
205 
207  inline const Eigen::MatrixXd cellPotential(size_t iT) const
208  {
209  Eigen::MatrixXd id = Eigen::MatrixXd::Identity(m_lie_algebra.dimension(), m_lie_algebra.dimension());
210  return Eigen::KroneckerProduct(m_sxcurl.cellPotential(iT), id);
211  }
212 
214  inline const Eigen::MatrixXd cellPotential(const Cell & T) const
215  {
216  return cellPotential(T.global_index());
217  }
218 
220  Eigen::MatrixXd computeL2Product(
221  const size_t iT,
222  const double & penalty_factor = 1.,
223  const Eigen::MatrixXd & mass_Pk3_T = Eigen::MatrixXd::Zero(1,1),
224  const IntegralWeight & weight = IntegralWeight(1.)
225  ) const
226  {
227  return Eigen::KroneckerProduct(m_sxcurl.computeL2Product(iT, penalty_factor, mass_Pk3_T, weight), m_lie_algebra.massMatrix());
228  }
229 
230 
232  Eigen::MatrixXd computeL2ProductGradient(
233  const size_t iT,
234  const SXGrad & sx_grad,
235  const std::string & side,
236  const double & penalty_factor = 1.,
237  const Eigen::MatrixXd & mass_Pk3_T = Eigen::MatrixXd::Zero(1,1),
238  const IntegralWeight & weight = IntegralWeight(1.)
239  ) const;
240 
241  //-----------------------//
242  //---- Getters ----------//
243 
245  inline const DDRCore::CellBases & cellBases(size_t iT) const
246  {
247  return m_sxcurl.cellBases(iT);
248  }
249 
251  inline const DDRCore::CellBases & cellBases(const Cell & T) const
252  {
253  return m_sxcurl.cellBases(T.global_index());
254  }
255 
257  inline const DDRCore::FaceBases & faceBases(size_t iF) const
258  {
259  return m_sxcurl.faceBases(iF);
260  }
261 
263  inline const DDRCore::FaceBases & faceBases(const Face & F) const
264  {
265  return m_sxcurl.faceBases(F.global_index());
266  }
267 
269  inline const DDRCore::EdgeBases & edgeBases(size_t iE) const
270  {
271  return m_sxcurl.edgeBases(iE);
272  }
273 
275  inline const DDRCore::EdgeBases & edgeBases(const Edge & E) const
276  {
277  return m_sxcurl.edgeBases(E.global_index());
278  }
279 
280  private:
281  TransferOperators _compute_face_transfer_operators(size_t iF);
282  TransferOperators _compute_cell_transfer_operators(size_t iT);
283 
284  const LieAlgebra & m_lie_algebra;
285  const SXCurl & m_sxcurl;
286 
287  // Containers for serendipity, extension and reduction operators
288  std::vector<std::unique_ptr<TransferOperators> > m_face_transfer_operators;
289  std::vector<std::unique_ptr<TransferOperators> > m_cell_transfer_operators;
290 
291  bool m_use_threads;
292  std::ostream & m_output;
293 
294  };
295 
296 } // end of namespace HArDCore3D
297 #endif
Discrete Lie algebra valued Serendipity Hcurl space: local operators, L2 product and global interpola...
Definition: lasxcurl.hpp:18
Lie algebra class: mass matrix, structure constants and Lie bracket.
Definition: liealgebra.hpp:17
Discrete Serendipity Hcurl space: local operators, L2 product and global interpolator.
Definition: sxcurl.hpp:21
Discrete Serendipity Hgrad space: local operators, L2 product and global interpolator.
Definition: sxgrad.hpp:20
Construct all polynomial spaces for the DDR sequence.
Definition: serendipity_problem.hpp:40
Base class for global DOF spaces.
Definition: variabledofspace.hpp:17
Class to describe a mesh.
Definition: MeshND.hpp:17
size_t dimension() const
Returns the dimension of the global space (all DOFs for all geometric entities)
Definition: variabledofspace.hpp:158
const Eigen::MatrixXd cellCurl(size_t iT) const
Return the full curl operator on the cell of index iT.
Definition: sxcurl.hpp:179
const Eigen::MatrixXd cellPotential(size_t iT) const
Return the potential operator on the cell of index iT.
Definition: sxcurl.hpp:191
const DDRCore::FaceBases & faceBases(size_t iF) const
Return face bases for the face of index iF.
Definition: sxcurl.hpp:242
const Eigen::MatrixXd faceCurl(size_t iF) const
Return the full curl operator on the face of index iF.
Definition: sxcurl.hpp:155
const DDRCore::EdgeBases & edgeBases(size_t iE) const
Return edge bases for the edge of index iE.
Definition: sxcurl.hpp:254
Eigen::MatrixXd computeL2Product(const size_t iT, const double &penalty_factor=1., const Eigen::MatrixXd &mass_Pk3_T=Eigen::MatrixXd::Zero(1, 1), const IntegralWeight &weight=IntegralWeight(1.)) const
Compute the matrix of the (weighted) L2-product.
Definition: sxcurl.hpp:203
const size_t & degree() const
Return the polynomial degree.
Definition: sxcurl.hpp:56
const DDRCore::CellBases & cellBases(size_t iT) const
Return cell bases for the face of index iT.
Definition: sxcurl.hpp:230
const Mesh & mesh() const
Return the mesh.
Definition: sxcurl.hpp:50
const SerendipityProblem & serPro() const
Definition: sxcurl.hpp:61
const Eigen::MatrixXd facePotential(size_t iF) const
Return the potential operator on the face of index iF.
Definition: sxcurl.hpp:167
bool use_threads
Definition: HHO_DiffAdvecReac.hpp:47
Eigen::MatrixXd extension
Definition: lasxcurl.hpp:40
const DDRCore::FaceBases & faceBases(const Face &F) const
Return cell bases for face F.
Definition: lasxcurl.hpp:263
const Mesh & mesh() const
Return the mesh.
Definition: lasxcurl.hpp:48
const Eigen::MatrixXd cellCurl(size_t iT) const
Return the full curl operator on the cell of index iT.
Definition: lasxcurl.hpp:194
const Eigen::MatrixXd facePotential(const Face &F) const
Return the potential operator on face F.
Definition: lasxcurl.hpp:188
const Eigen::MatrixXd & ScurlFace(size_t iF) const
Return the serendipity reconstruction for the face of index iF.
Definition: lasxcurl.hpp:91
const DDRCore::FaceBases & faceBases(size_t iF) const
Return face bases for the face of index iF.
Definition: lasxcurl.hpp:257
const Eigen::MatrixXd cellPotential(const Cell &T) const
Return the potential operator on cell T.
Definition: lasxcurl.hpp:214
const Eigen::MatrixXd & ScurlFace(const Face &F) const
Return the serendipity reconstruction for face F.
Definition: lasxcurl.hpp:109
std::vector< FunctionType > LAFunctionType
Definition: lasxcurl.hpp:21
Eigen::MatrixXd computeL2Product(const size_t iT, const double &penalty_factor=1., const Eigen::MatrixXd &mass_Pk3_T=Eigen::MatrixXd::Zero(1, 1), const IntegralWeight &weight=IntegralWeight(1.)) const
Compute the matrix of the (weighted) L2-product.
Definition: lasxcurl.hpp:220
const size_t & degree() const
Return the polynomial degree.
Definition: lasxcurl.hpp:54
const Eigen::MatrixXd & massMatrix() const
Returns the Gram matrix of the Lie algebra.
Definition: liealgebra.hpp:40
const Eigen::MatrixXd & RcurlFace(const Face &F) const
Return cell reduction for cell T.
Definition: lasxcurl.hpp:121
const DDRCore::CellBases & cellBases(const Cell &T) const
Return cell bases for cell T.
Definition: lasxcurl.hpp:251
const Eigen::MatrixXd & EcurlFace(const Face &F) const
Return the extension for face F.
Definition: lasxcurl.hpp:115
const Eigen::MatrixXd & EcurlFace(size_t iF) const
Return the extension for the face of index iF.
Definition: lasxcurl.hpp:97
const Eigen::MatrixXd cellCurl(const Cell &T) const
Return the full curl operator on cell T.
Definition: lasxcurl.hpp:201
const Eigen::MatrixXd facePotential(size_t iF) const
Return the potential operator on the face of index iF.
Definition: lasxcurl.hpp:181
const DDRCore::CellBases & cellBases(size_t iT) const
Return cell bases for the face of index iT.
Definition: lasxcurl.hpp:245
Eigen::MatrixXd serendipity
Definition: lasxcurl.hpp:39
const LieAlgebra & lieAlg() const
Return the Lie algebra.
Definition: lasxcurl.hpp:60
const Eigen::VectorXd LaxcurlI(size_t iG, Eigen::VectorXd &v) const
Definition: lasxcurl.hpp:82
const DDRCore::EdgeBases & edgeBases(const Edge &E) const
Return edge bases for edge E.
Definition: lasxcurl.hpp:275
const Eigen::MatrixXd & ScurlCell(size_t iT) const
Return the serendipity reconstruction for the cell of index iT.
Definition: lasxcurl.hpp:129
const Eigen::MatrixXd faceCurl(size_t iF) const
Return the full curl operator on the face of index iF.
Definition: lasxcurl.hpp:168
const size_t dimension() const
Assuming orthonormal basis.
Definition: liealgebra.hpp:28
const Eigen::MatrixXd & EcurlCell(const Cell &T) const
Return the extension for cell T.
Definition: lasxcurl.hpp:153
TransferOperators(const Eigen::MatrixXd &_serendipity, const Eigen::MatrixXd &_extension, const Eigen::MatrixXd &_reduction)
Definition: lasxcurl.hpp:27
Eigen::MatrixXd reduction
Definition: lasxcurl.hpp:41
const Eigen::MatrixXd & EcurlCell(size_t iT) const
Return the extension for the cell of index iT.
Definition: lasxcurl.hpp:135
const Eigen::MatrixXd & RcurlFace(size_t iF) const
Return the reduction for the face of index iF.
Definition: lasxcurl.hpp:103
const DDRCore::EdgeBases & edgeBases(size_t iE) const
Return edge bases for the edge of index iE.
Definition: lasxcurl.hpp:269
const Eigen::MatrixXd cellPotential(size_t iT) const
Return the potential operator on the cell of index iT.
Definition: lasxcurl.hpp:207
const Eigen::MatrixXd & RcurlCell(size_t iT) const
Return the reduction for the cell of index iT.
Definition: lasxcurl.hpp:141
const SerendipityProblem & serPro() const
Return the serendipity operators.
Definition: lasxcurl.hpp:66
Eigen::MatrixXd computeL2ProductGradient(const size_t iT, const SXGrad &sx_grad, const std::string &side, const double &penalty_factor=1., const Eigen::MatrixXd &mass_Pk3_T=Eigen::MatrixXd::Zero(1, 1), const IntegralWeight &weight=IntegralWeight(1.)) const
Compute the matrix of the (weighted) L2-product as 'computeL2Product', with application of the discre...
Definition: lasxcurl.cpp:100
std::function< Eigen::Vector3d(const Eigen::Vector3d &)> FunctionType
Definition: lasxcurl.hpp:20
const Eigen::MatrixXd faceCurl(const Face &F) const
Return the full curl operator on face F.
Definition: lasxcurl.hpp:175
Eigen::VectorXd interpolate(const LAFunctionType &v, const int doe_cell=-1, const int doe_face=-1, const int doe_edge=-1) const
Interpolator of a continuous function.
Definition: lasxcurl.cpp:61
const Eigen::MatrixXd & RcurlCell(const Cell &T) const
Return the reduction for cell T.
Definition: lasxcurl.hpp:159
LASXCurl(const LieAlgebra &lie_algebra, const SXCurl &sx_curl, bool use_threads=true, std::ostream &output=std::cout)
Constructor.
Definition: lasxcurl.cpp:10
const Eigen::MatrixXd & ScurlCell(const Cell &T) const
Return the serendipity reconstruction for cell T.
Definition: lasxcurl.hpp:147
Definition: ddr-magnetostatics.hpp:40
MeshND::Edge< 2 > Edge
Definition: Mesh2D.hpp:11
MeshND::Face< 2 > Face
Definition: Mesh2D.hpp:12
MeshND::Cell< 2 > Cell
Definition: Mesh2D.hpp:13
Structure to store element bases.
Definition: ddrcore.hpp:86
Structure to store edge bases.
Definition: ddrcore.hpp:121
Structure to store face bases.
Definition: ddrcore.hpp:105
Structure for weights (scalar, at the moment) in integral.
Definition: integralweight.hpp:36
A structure to store the serendipity, extension and reduction operators.
Definition: lasxcurl.hpp:26