1#ifndef PKPO_PK_PK_PK_HPP 
    2#define PKPO_PK_PK_PK_HPP 
   31      Eigen::VectorXd _interpolate_velocity(
 
   37      void _construct_stabilization(
size_t iT, 
const double & viscosity);
 
   39      std::vector<Eigen::MatrixXd> m_rtn_to_potential;
 
   41      std::unique_ptr<GlobalDOFSpace> m_auxiliary_dof_table;      
 
 
   47    Eigen::VectorXd PkpoPkPkPk::_interpolate_velocity(
 
   59      std::function<void(
size_t, 
size_t)> interpolate_edges
 
   60        = [
this, 
v, &vh, &doe_edge](
size_t start, 
size_t end)->
void 
   64          for (
size_t iE = start; iE < 
end; iE++) {
 
   66            const auto & edge_dofs_E = edge_dofs[E.global_index()];
 
   69            vh.segment(this->
m_velocity_space->globalOffset(E), this->m_velocity_space->numberOfLocalEdgeDofs())
 
   76      std::function<void(
size_t, 
size_t)> interpolate_cells
 
   77    = [
this, &vh, 
v, &doe_cell, &doe_edge](
size_t start, 
size_t end)->
void 
   84      size_t dim_rtn_cell_dofs = LocalSpaceDimensions<PolynCellType>::get(
m_degree - 1);
 
   85      size_t dim_rtn_edge_dofs = LocalSpaceDimensions<PolyEdgeType>::get(
m_degree);
 
   86      size_t dim_rtn_roly = LocalSpaceDimensions<RolyCellType>::get(
m_degree);
 
   87      size_t dim_rtn_roly_compl = LocalSpaceDimensions<RolyComplCellType>::get(
m_degree + 1);
 
   88      size_t dim_rtn = dim_rtn_roly + dim_rtn_roly_compl;
 
   90      for (
size_t iT = start; iT < 
end; iT++) {
 
   94        Eigen::MatrixXd MIT = Eigen::MatrixXd::Zero(dim_rtn, dim_rtn);
 
   95        Eigen::VectorXd bIT = Eigen::VectorXd(dim_rtn);
 
  100        if (dim_rtn_cell_dofs > 0) {
 
  103          MIT.block(m_auxiliary_dof_table->localOffset(
T), 0, dim_rtn_cell_dofs, dim_rtn_roly)
 
  104        = 
GramMatrix(
T, *rtn_cell_dofs, *rtn_roly[iT], int_mono_cell);
 
  105          MIT.block(m_auxiliary_dof_table->localOffset(
T), dim_rtn_roly, dim_rtn_cell_dofs, dim_rtn_roly_compl)
 
  106        = 
GramMatrix(
T, *rtn_cell_dofs, *rtn_roly_compl[iT], int_mono_cell);
 
  109          bIT.segment(m_auxiliary_dof_table->localOffset(
T), dim_rtn_cell_dofs)
 
  113        for (
size_t iE = 0; iE < 
T.n_edges(); iE++) {
 
  114          const Edge & E = *
T.edge(iE);
 
  115          auto nTE = 
T.edge_normal(iE);
 
  117          const auto & rtn_edge_dofs_E = rtn_edge_dofs[E.global_index()];
 
  119          auto normal_component = [&nTE](
const VectorRd & w)->
double { 
return w.dot(nTE); };
 
  125          auto rtn_roly_compl_quad
 
  131          std::function<double(
const VectorRd &)> evaluate_normal_component
 
  132        = [
v, &nTE](
const VectorRd & 
x) { 
return v(
x).dot(nTE); };
 
  134          MIT.block(m_auxiliary_dof_table->localOffset(
T, E), 0, dim_rtn_edge_dofs, dim_rtn_roly)
 
  136          MIT.block(m_auxiliary_dof_table->localOffset(
T, E), dim_rtn_roly, dim_rtn_edge_dofs, dim_rtn_roly_compl)
 
  139          bIT.segment(m_auxiliary_dof_table->localOffset(
T, E), dim_rtn_edge_dofs)
 
  140        = 
l2_projection(evaluate_normal_component, *rtn_edge_dofs_E, quad_E, rtn_edge_dofs_quad, 
GramMatrix(E, *rtn_edge_dofs_E));
 
  143        vh.segment(this->
m_velocity_space->globalOffset(T), this->m_velocity_space->numberOfLocalCellDofs())
 
  144          = m_rtn_to_potential[iT] * MIT.fullPivLu().solve(bIT);
 
The BoundaryConditions class provides definition of boundary conditions.
Definition BoundaryConditions.hpp:45
 
std::function< VectorRd(const VectorRd &)> VelocityType
Definition hypre.hpp:37
 
size_t degree() const
Returns the degree.
Definition hypre.hpp:64
 
const Mesh & mesh() const
Returns the mesh.
Definition hypre.hpp:166
 
std::unique_ptr< DiscreteSpace > m_velocity_space
Definition hypre.hpp:366
 
size_t m_degree
Definition hypre.hpp:345
 
std::function< double(const VectorRd &)> PressureType
Definition hypre.hpp:39
 
bool m_use_threads
Definition hypre.hpp:348
 
Definition pkpo-pk-pk-pk.hpp:12
 
Eigen::VectorXd interpolate(const VelocityType &u, const PressureType &p) const
Interpolate both velocity and pressure.
Definition pkpo-pk-pk-pk.cpp:196
 
Vector family obtained by tensorization of a scalar family.
Definition basis.hpp:564
 
end
Definition convergence_analysis.m:107
 
Create grid points x
Definition generate_cartesian_mesh.m:22
 
Eigen::Vector2d VectorRd
Definition basis.hpp:55
 
Eigen::MatrixXd compute_gram_matrix(const boost::multi_array< VectorRd, 2 > &B1, const boost::multi_array< double, 2 > &B2, const QuadratureRule &qr)
Compute the Gram-like matrix given a family of vector-valued and one of scalar-valued functions by te...
Definition basis.cpp:239
 
Eigen::VectorXd l2_projection(const std::function< typename BasisType::FunctionValue(const VectorRd &)> &f, const BasisType &basis, QuadratureRule &quad, const boost::multi_array< typename BasisType::FunctionValue, 2 > &basis_quad, const Eigen::MatrixXd &mass_basis=Eigen::MatrixXd::Zero(1, 1))
Compute the L2-projection of a function.
Definition basis.hpp:3023
 
static boost::multi_array< typename detail::basis_evaluation_traits< BasisType, BasisFunction >::ReturnValue, 2 > compute(const BasisType &basis, const QuadratureRule &quad)
Generic basis evaluation.
Definition basis.hpp:2425
 
static void parallel_for(unsigned nb_elements, std::function< void(size_t start, size_t end)> functor, bool use_threads=true, unsigned nb_threads_max=1e9)
Generic function to execute threaded processes.
Definition parallel_for.hpp:42
 
Polytope< 1 > Edge
A Face is a Polytope with object_dim = DIMENSION - 1.
Definition Polytope2D.hpp:147
 
std::vector< QuadratureNode > QuadratureRule
Definition quadraturerule.hpp:55
 
std::unordered_map< VectorZd, double, VecHash > MonomialCellIntegralsType
Type for list of integrals of monomials.
Definition GMpoly_cell.hpp:53
 
MonomialCellIntegralsType IntegrateCellMonomials(const Cell &T, const size_t maxdeg)
Compute all integrals on a cell of monomials up to a total degree, using vertex values.
Definition GMpoly_cell.cpp:7
 
Eigen::MatrixXd GramMatrix(const Cell &T, const MonomialScalarBasisCell &basis1, const MonomialScalarBasisCell &basis2, MonomialCellIntegralsType mono_int_map={})
Computes the Gram Matrix of a pair of local scalar monomial bases.
Definition GMpoly_cell.cpp:86
 
QuadratureRule generate_quadrature_rule(const Cell &T, const int doe, const bool force_split)
Generate quadrature rule on mesh element.
Definition quadraturerule.cpp:10
 
if(strcmp(field, 'real')) % real valued entries T
Definition mmread.m:93
 
TensorizedVectorFamily< PolyCellType, dimspace > PolynCellType
Definition discrete-space-descriptor.hpp:23
 
Family< RolyComplBasisCell > RolyComplCellType
Definition discrete-space-descriptor.hpp:30
 
Family< CurlBasis< ShiftedBasis< MonomialScalarBasisCell > > > RolyCellType
Definition discrete-space-descriptor.hpp:29
 
Family< MonomialScalarBasisEdge > PolyEdgeType
Definition discrete-space-descriptor.hpp:22
 
Definition ddr-klplate.hpp:27
 
static auto v
Definition ddrcore-test.hpp:32
 
Definition hho-interpolate.hpp:15
 
int doe_cell
Definition hho-interpolate.hpp:17
 
bool use_threads
Definition hho-interpolate.hpp:16
 
int doe_edge
Definition hho-interpolate.hpp:18
 
Evaluate a basis at quadrature nodes. 'BasisFunction' (=Function, Gradient, Curl, Divergence,...
Definition basis.hpp:2421