HArD::Core3D
Hybrid Arbitrary Degree::Core 3D - Library to implement 3D schemes with vertex, edge, face and cell polynomials as unknowns
Loading...
Searching...
No Matches
Namespaces | Classes | Functions
Manicore Namespace Reference

Namespaces

namespace  Dimension
 

Classes

struct  Compute_pullback
 
struct  Compute_pullback< 0, d1, d2 >
 
struct  Compute_pullback< 1, 1, 1 >
 
struct  Compute_pullback< 1, d1, d2 >
 
struct  Compute_pullback< 2, 2, 3 >
 
struct  Compute_pullback< 2, 3, 2 >
 
struct  Compute_pullback< 2, 3, 3 >
 
struct  Compute_pullback< d, d, d >
 
class  Diff_exterior
 
struct  Diff_full
 Differential operator from $P_r\Lambda^l(R^d)$ to $P_{r-1}\Lambda^{l+1}(R^d)$. More...
 
struct  Diff_homogeneous_mat
 Generate the matrices for the Differential operator on homogeneous monomial. More...
 
class  ExteriorBasis
 Class to handle the exterior algebra basis. More...
 
struct  Initialize_exterior_module
 Initialize every class related to the polynomial degree r. More...
 
class  Koszul_exterior
 Compute the action of Kozsul and Diff on the exterior algebra. More...
 
struct  Koszul_full
 Koszul operator from $P_r\Lambda^l(R^d)$ to $P_{r+1}\Lambda^{l-1}(R^d)$. More...
 
struct  Koszul_homogeneous_mat
 Generate the matrices for the Koszul operator on homogeneous monomial. More...
 
struct  Monomial_powers
 Generate a basis of monomial powers of degree r. More...
 
class  Monomial_scalar_basis_linear_ID
 
class  Monomial_scalar_basis_linear_ID< d, d >
 

Functions

template<typename V , typename Derived >
double Compute_partial_det (const V &a1, const V &a2, const Eigen::MatrixBase< Derived > &A)
 Generic determinant computation.
 

Function Documentation

◆ Compute_partial_det()

template<typename V , typename Derived >
double Manicore::Compute_partial_det ( const V &  a1,
const V &  a2,
const Eigen::MatrixBase< Derived > &  A 
)

Generic determinant computation.



The first two arguments should be the list of indexes to use, and the last the matrix This function returns the determinant of the partial matrix