1#ifndef VSXGRAD_TEST_HPP
2#define VSXGRAD_TEST_HPP
4#include <boost/math/constants/constants.hpp>
10 static const double PI = boost::math::constants::pi<double>();
17 return sin(
PI * x(0)) * sin(
PI * x(1)) *
VectorRd(1., 1.);
20 static std::function<
MatrixRd(
const Eigen::Vector2d&)>
23 G.row(0) <<
PI * Eigen::Vector2d(
24 cos(
PI * x(0)) * sin(
PI * x(1)),
25 sin(
PI * x(0)) * cos(
PI * x(1))
27 G.row(1) <<
PI * Eigen::Vector2d(
28 cos(
PI * x(0)) * sin(
PI * x(1)),
29 sin(
PI * x(0)) * cos(
PI * x(1))
35 static std::function<double(
const Eigen::Vector2d&)>
37 double d1f2 =
PI * std::cos(
PI * x(0)) * std::sin(
PI * x(1));
38 double d2f1 =
PI * std::sin(
PI * x(0)) * std::cos(
PI * x(1));
50 return MatrixRd::Zero();
53static std::function<double(
const VectorRd&)>
62 return (1. + x(0) + 2. * x(1)) *
VectorRd(-1., 1.);
65 static std::function<
MatrixRd(
const Eigen::Vector2d&)>
68 G.row(0) << -
VectorRd(1., 2.).transpose();
69 G.row(1) <<
VectorRd(1., 2.).transpose();
73static std::function<double(
const VectorRd&)>
82 return linear(x) + (std::pow(x(0), 2) + 2. * std::pow(x(1), 2)) *
VectorRd(-1., 0.);
85 static std::function<
MatrixRd(
const Eigen::Vector2d&)>
88 G.row(0) += -1 *
VectorRd(2*x(0), 4*x(1)).transpose();
92 static std::function<double(
const VectorRd&)>
94 return 3.0 + 4.0 * x(1);
101 const std::function<
T(
const Eigen::Vector2d &)> & f,
102 const Eigen::VectorXd & fX,
103 const boost::multi_array<T, 2> & fX_basis_quad,
109 fX_basis_quad.shape()[0] == (
size_t)fX.size() &&
110 fX_basis_quad.shape()[1] == quad_X.size()
115 for (
size_t iqn = 0; iqn < quad_X.size(); iqn++) {
116 T f_iqn = f(quad_X[iqn].vector());
118 T fX_iqn = fX(0) * fX_basis_quad[0][iqn];
119 for (
size_t i = 1;
i < fX_basis_quad.shape()[0];
i++) {
120 fX_iqn += fX(
i) * fX_basis_quad[
i][iqn];
123 T diff_iqn = f_iqn - fX_iqn;
Compute max and min eigenvalues of all matrices for i
Definition compute_eigs.m:5
Eigen::Vector2d VectorRd
Definition basis.hpp:55
double scalar_product(const double &x, const double &y)
Scalar product between two reals.
Definition basis.cpp:163
Eigen::Matrix2d MatrixRd
Definition basis.hpp:54
std::function< Eigen::Vector2d(const Eigen::Vector2d &)> FunctionType
Definition vsxgrad.hpp:33
static const double PI
Definition ddr-klplate.hpp:187
std::vector< QuadratureNode > QuadratureRule
Definition quadraturerule.hpp:55
if(strcmp(field, 'real')) % real valued entries T
Definition mmread.m:93
Definition ddr-klplate.hpp:27
static std::function< MatrixRd(const Eigen::Vector2d &)> grad_quadratic
Definition vsxgrad-test.hpp:86
static std::function< VectorRd(const VectorRd &)> linear
Definition vsxgrad-test.hpp:61
static VSXGrad::FunctionType trigonometric
Definition vsxgrad-test.hpp:16
static std::function< VectorRd(const VectorRd &)> constant
Definition vsxgrad-test.hpp:44
static std::function< MatrixRd(const VectorRd &)> grad_constant
Definition vsxgrad-test.hpp:49
static std::function< MatrixRd(const Eigen::Vector2d &)> grad_trigonometric
Definition vsxgrad-test.hpp:21
static std::function< double(const VectorRd &)> rot_quadratic
Definition vsxgrad-test.hpp:93
static std::function< MatrixRd(const Eigen::Vector2d &)> grad_linear
Definition vsxgrad-test.hpp:66
static std::function< double(const VectorRd &)> rot_constant
Definition vsxgrad-test.hpp:54
static std::function< double(const VectorRd &)> rot_linear
Definition vsxgrad-test.hpp:74
static std::function< VectorRd(const VectorRd &)> quadratic
Definition vsxgrad-test.hpp:81
static std::function< double(const Eigen::Vector2d &)> rot_trigonometric
Definition vsxgrad-test.hpp:36
double squared_l2_error(const std::function< T(const Eigen::Vector2d &)> &f, const Eigen::VectorXd &fX, const boost::multi_array< T, 2 > &fX_basis_quad, const QuadratureRule &quad_X)
Definition excurl-test.hpp:140