12#ifndef _LEPNC_DIFFUSION_HPP
13#define _LEPNC_DIFFUSION_HPP
19#include <boost/timer/timer.hpp>
22#include <Eigen/Sparse>
74 std::string solver_type,
75 std::ostream & output = std::cout
79 Eigen::VectorXd
solve();
82 double EnergyNorm(
const Eigen::VectorXd Xh)
const;
91 Eigen::MatrixXd diffusion_operator(
const size_t iT)
const;
94 Eigen::VectorXd load_operator(
const size_t iT)
const;
103 const std::string solver_type;
104 std::ostream & m_output;
107 std::vector<Eigen::MatrixXd> DiffT;
108 std::vector<Eigen::VectorXd> SourceT;
111 size_t _assembly_time;
112 size_t _solving_time;
113 double _solving_error;
114 mutable std::vector<size_t> _itime = std::vector<size_t>(10, 0);
121 _deg_kappa(deg_kappa),
124 exact_solution(exact_solution),
125 grad_exact_solution(grad_exact_solution),
126 solver_type(solver_type),
129 m_output <<
"[LEPNC_diffusion] Initializing" << std::endl;
134 SourceT.resize(mesh->
n_cells());
135 for (
size_t iT = 0; iT < mesh->
n_cells(); iT++) {
136 DiffT[iT] = diffusion_operator(iT);
137 SourceT[iT] = load_operator(iT);
144 boost::timer::cpu_timer timer;
145 boost::timer::cpu_timer timerint;
147 size_t n_edges_dofs = mesh->
n_edges();
151 Eigen::VectorXd DirBC = Eigen::VectorXd::Zero(n_cell_dofs + n_edges_dofs);
152 for (
size_t ibF = 0; ibF < mesh->n_b_edges(); ibF++){
153 Edge* edge = mesh->b_edge(ibF);
154 if (m_BC.
type(*edge)==
"dir"){
155 size_t iF = edge->global_index();
158 DirBC(n_cell_dofs + iF) += quadrule.w * exact_solution(quadrule.x, quadrule.y);
161 DirBC(n_cell_dofs + iF) /= mesh->b_edge(ibF)->measure();
169 Eigen::SparseMatrix<double> GlobMat(n_edges_dofs, n_edges_dofs);
170 std::vector<Eigen::Triplet<double>> triplets_GlobMat;
171 Eigen::VectorXd GlobRHS = Eigen::VectorXd::Zero(n_edges_dofs);
174 Eigen::SparseMatrix<double> ScMat(n_cell_dofs, n_edges_dofs);
175 std::vector<Eigen::Triplet<double>> triplets_ScMat;
176 Eigen::VectorXd ScRHS = Eigen::VectorXd::Zero(n_cell_dofs);
179 for (
size_t iT = 0; iT < mesh->n_cells(); iT++) {
180 Cell* cell = mesh->cell(iT);
181 size_t n_edgesT = cell->n_edges();
184 Eigen::MatrixXd MatT = DiffT[iT];
186 Eigen::MatrixXd ATF = MatT.topRightCorner(
DimPoly<Cell>(1), n_edgesT);
187 Eigen::MatrixXd AFT = MatT.bottomLeftCorner(n_edgesT,
DimPoly<Cell>(1));
188 Eigen::MatrixXd AFF = MatT.bottomRightCorner(n_edgesT, n_edgesT);
190 Eigen::PartialPivLU<Eigen::MatrixXd> invATT;
193 Eigen::MatrixXd invATT_ATF = invATT.solve(ATF);
194 Eigen::VectorXd invATT_source_cell = invATT.solve(SourceT[iT].head(
DimPoly<Cell>(1)));
197 Eigen::MatrixXd MatF = Eigen::MatrixXd::Zero(n_edgesT, n_edgesT);
198 Eigen::VectorXd bF = Eigen::VectorXd::Zero(n_edgesT);
199 MatF = AFF - AFT * invATT_ATF;
200 bF = SourceT[iT].tail(n_edgesT) - AFT * invATT_source_cell;
204 for (
size_t i = 0; i < DimPoly<Cell>(1);
i++){
206 for (
size_t j = 0;
j < n_edgesT;
j++){
207 size_t jGlobal = cell->edge(
j)->global_index();
208 triplets_ScMat.emplace_back(iGlobal, jGlobal, invATT_ATF(
i,
j));
213 for (
size_t i = 0;
i < n_edgesT;
i++){
214 size_t iGlobal = cell->edge(
i)->global_index();
215 for (
size_t j = 0;
j < n_edgesT;
j++){
216 size_t jGlobal = cell->edge(
j)->global_index();
217 triplets_GlobMat.emplace_back(iGlobal, jGlobal, MatF(
i,
j));
219 GlobRHS(iGlobal) += bF(
i);
224 GlobMat.setFromTriplets(std::begin(triplets_GlobMat), std::end(triplets_GlobMat));
225 ScMat.setFromTriplets(std::begin(triplets_ScMat), std::end(triplets_ScMat));
228 size_t n_edge_unknowns = mesh->n_edges() - m_BC.
n_dir_edges();
229 Eigen::SparseMatrix<double>
A = GlobMat.topLeftCorner(n_edge_unknowns, n_edge_unknowns);
230 Eigen::VectorXd B = GlobRHS.head(n_edge_unknowns);
233 Eigen::BiCGSTAB<Eigen::SparseMatrix<double> > solver;
235 Eigen::VectorXd Xh_edges = solver.solve(B);
237 Eigen::VectorXd Xh = DirBC;
238 Xh.segment(n_cell_dofs, n_edge_unknowns) = Xh_edges;
239 Xh.head(n_cell_dofs) = ScRHS - ScMat * Xh.tail(n_edges_dofs);
250Eigen::MatrixXd LEPNC_diffusion::diffusion_operator(
const size_t iT)
const {
253 Cell* cell = mesh->cell(iT);
254 const size_t n_edgesT = cell->n_edges();
260 std::function<Eigen::Matrix2d(
double,
double)> kappaT = [&](
double x,
double y){
261 return kappa(x, y, cell);
265 size_t doe = 2 + _deg_kappa;
269 std::vector<Eigen::Matrix2d> kappaT_quadT(quadT.size());
270 std::transform(quadT.begin(), quadT.end(), kappaT_quadT.begin(),
271 [&kappaT](
QuadratureNode qr) -> Eigen::MatrixXd { return kappaT(qr.x, qr.y); });
273 return nc.
gram_matrix(Dnc_phiT_quadT, Dnc_phiT_quadT, local_dofs, local_dofs, quadT,
true, kappaT_quadT);
281Eigen::VectorXd LEPNC_diffusion::load_operator(
const size_t iT)
const {
284 Cell* cell = mesh->cell(iT);
285 size_t n_edgesT = cell->n_edges();
287 Eigen::VectorXd b = Eigen::VectorXd::Zero(local_dofs);
292 size_t nbq = quadT.size();
293 std::vector<Eigen::ArrayXd> nc_phiT_quadT = nc.
nc_basis_quad(iT, quadT);
296 Eigen::ArrayXd weight_source_quad = Eigen::ArrayXd::Zero(nbq);
297 for (
size_t iqn = 0; iqn < nbq; iqn++){
298 weight_source_quad(iqn) = quadT[iqn].w * source(quadT[iqn].x, quadT[iqn].y, cell);
301 for (
size_t i=0;
i < local_dofs;
i++){
302 b(
i) = (weight_source_quad * nc_phiT_quadT[
i]).sum();
306 if (cell->is_boundary()){
308 for (
size_t ilF = 0; ilF < cell->n_edges(); ilF++) {
309 Edge* edge = cell->edge(ilF);
310 if (m_BC.
type(*edge)==
"neu"){
312 if (edge->is_boundary()){
313 const auto& nTF = cell->edge_normal(ilF);
317 return nTF.dot(kappa(p.x(),p.y(),cell) * grad_exact_solution(p.x(),p.y(),cell)) * phi_i(p.x(),p.y());
340 for (
size_t iT = 0; iT < mesh-> n_cells(); iT++) {
341 Eigen::VectorXd XTF = nc.
nc_restr(Xh, iT);
342 value += XTF.transpose() * DiffT[iT] * XTF;
350 return double(_assembly_time) * pow(10, -9);
354 return double(_solving_time) * pow(10, -9);
358 return double(_itime[idx]) * pow(10, -9);
362 return _solving_error;
The BoundaryConditions class provides definition of boundary conditions.
Definition BoundaryConditions.hpp:45
const std::string type(const Edge &edge) const
Test the boundary condition of an edge.
Definition BoundaryConditions.cpp:41
const size_t n_dir_edges() const
Returns the number of Dirichlet edges.
Definition BoundaryConditions.hpp:70
Definition lepnccore.hpp:33
The LEPNC_diffusion class provides an implementation of the LEPNC method for the stationnary diffusio...
Definition LEPNC_diffusion.hpp:56
Compute max and min eigenvalues of all matrices for i
Definition compute_eigs.m:5
Eigen::Vector2d VectorRd
Definition basis.hpp:55
const size_t DimPoly< Cell >(const int m)
Compute the size of the basis of 2-variate polynomials up to degree m.
Definition hybridcore.hpp:63
const Mesh * get_mesh() const
Returns a pointer to the mesh.
Definition hybridcore.hpp:201
std::function< VectorRd(double, double, Cell *)> grad_function_type
type for gradient
Definition LEPNC_diffusion.hpp:62
Eigen::MatrixXd gram_matrix(const std::vector< Eigen::ArrayXd > &f_quad, const std::vector< Eigen::ArrayXd > &g_quad, const size_t &nrows, const size_t &ncols, const QuadratureRule &quad, const bool &sym, std::vector< double > L2weight={}) const
Definition lepnccore.hpp:517
double get_itime(size_t idx) const
various intermediate assembly times
Definition LEPNC_diffusion.hpp:357
std::function< Eigen::Matrix2d(double, double, Cell *)> tensor_function_type
type for diffusion tensor
Definition LEPNC_diffusion.hpp:63
const std::vector< Eigen::ArrayXd > nc_basis_quad(const size_t iT, const QuadratureRule quad) const
Computes non-conforming basis functions at the given quadrature nodes.
Definition lepnccore.hpp:432
Eigen::VectorXd nc_restr(const Eigen::VectorXd &Xh, size_t iT) const
Extract from a global vector Xh of unknowns the non-conforming unknowns corresponding to cell iT.
Definition lepnccore.hpp:678
const std::vector< Eigen::ArrayXXd > grad_nc_basis_quad(const size_t iT, const QuadratureRule quad) const
Compute at the quadrature nodes, where are the cell basis functions.
Definition lepnccore.hpp:471
double get_solving_error() const
residual after solving the scheme
Definition LEPNC_diffusion.hpp:361
double get_solving_time() const
cpu time to solve the scheme
Definition LEPNC_diffusion.hpp:353
std::function< double(double, double)> solution_function_type
type for solution
Definition LEPNC_diffusion.hpp:60
LEPNC_diffusion(LEPNCCore &nc, tensor_function_type kappa, size_t deg_kappa, source_function_type source, BoundaryConditions BC, solution_function_type exact_solution, grad_function_type grad_exact_solution, std::string solver_type, std::ostream &output=std::cout)
Constructor of the class.
Definition LEPNC_diffusion.hpp:118
const cell_basis_type & nc_basis(size_t iT, size_t i) const
Return a reference to the i'th non-conforming basis function of the cell iT.
Definition lepnccore.hpp:410
Eigen::VectorXd solve()
Assemble and solve the scheme.
Definition LEPNC_diffusion.hpp:142
double get_assembly_time() const
cpu time to assemble the scheme
Definition LEPNC_diffusion.hpp:349
std::function< double(double, double, Cell *)> source_function_type
type for source
Definition LEPNC_diffusion.hpp:61
double EnergyNorm(const Eigen::VectorXd Xh) const
Discrete energy norm (associated to the diffusion operator)
Definition LEPNC_diffusion.hpp:336
Polytope< DIMENSION > Cell
Definition Polytope2D.hpp:151
Polytope< 1 > Edge
A Face is a Polytope with object_dim = DIMENSION - 1.
Definition Polytope2D.hpp:147
std::size_t n_cells() const
number of cells in the mesh.
Definition Mesh2D.hpp:63
std::size_t n_edges() const
number of edges in the mesh.
Definition Mesh2D.hpp:61
std::vector< QuadratureNode > QuadratureRule
Definition quadraturerule.hpp:55
QuadratureRule generate_quadrature_rule(const Cell &T, const int doe, const bool force_split)
Generate quadrature rule on mesh element.
Definition quadraturerule.cpp:10
for j
Definition mmread.m:174
Definition ddr-klplate.hpp:27
Description of one node and one weight from a quadrature rule.
Definition quadraturerule.hpp:41