HArD::Core2D
Hybrid Arbitrary Degree::Core 2D - Library to implement 2D schemes with edge and cell polynomials as unknowns
|
#include <HHO2D.hpp>
Public Member Functions | |
HHO2D (HybridCore &, const size_t, const size_t, const bool use_threads=true, size_t doeT=0, size_t doeF=0) | |
Class constructor: initialises the model by providing a HybridCore object, and the exact solution and boundary conditions of the model. | |
void | assemble () |
A general assemble routine that calculates the statically condensed matrices required by solve. | |
UVector | solve () |
Solves the statically condensed system. | |
UVector | neumann_solve () |
Solves the system when the model is ill posed (not yet running) | |
double | energy_norm (const UVector) |
Returns the energy norm of a given UVector. | |
void | set_global_operator (const MatrixFType &) |
Set the global operator. | |
void | set_load_vector (const VectorFType &) |
Set the load vector. | |
void | plot (const std::string, const UVector &, const FType< double > &) |
Plot the numerical and exact solutions. | |
VectorFType | standard_load_vector (const CellFType< double > &) |
Returns the standard load vector (f, v_T)_T with no Neumann boundary conditions. | |
VectorFType | standard_load_vector (const CellFType< double > &, const CellFType< VectorRd > &, const BoundaryConditions &) |
Returns the standard load vector (f, v_T)_T. | |
VectorFType | standard_load_vector (const CellFType< double > &, const FType< double > &, const BoundaryConditions &) |
Returns the standard load vector (f, v_T)_T. | |
void | set_dirichlet (const FType< double > &, const size_t) |
Set the Dirichlet boundary conditions. | |
void | set_dirichlet (const size_t) |
Set the Dirichlet boundary condition to zero. | |
Eigen::SparseMatrix< double > | get_SysMat () |
Return the (statically condensed) matrix system. | |
double | get_assembly_time () const |
CPU time to assemble the scheme. | |
double | get_solving_time () const |
CPU time to solve the scheme. | |
double | get_solving_error () const |
Residual after solving the scheme. | |