HArD::Core2D
Hybrid Arbitrary Degree::Core 2D - Library to implement 2D schemes with edge and cell polynomials as unknowns
Loading...
Searching...
No Matches
Polytope2D.hpp
Go to the documentation of this file.
1// standard libraries
2#include <vector> // std::vector
3#include <algorithm> // std::find
4#include <fstream> // std::ofstream
5
6// external linking to Eigen is required
7#include <Eigen/Dense> // Eigen::Matrix, Eigen::MatrixXd, Eigen::FullPivLU
8
9// path to Math specified so that external linking is NOT required
10#include <../Math/math.hpp> // Math::factorial, Math::sgn
11
12#ifndef _POLYTOPE2D_HPP
13#define _POLYTOPE2D_HPP
14
15namespace Mesh2D
16{
17 inline constexpr int DIMENSION = 2;
18
19 using VectorRd = Eigen::Matrix<double, DIMENSION, 1>;
20 using VectorZd = Eigen::Matrix<int, DIMENSION, 1>;
21
22 template <size_t object_dim>
23 using Simplex = std::array<VectorRd, object_dim + 1>;
24
25 template <size_t object_dim>
26 using Simplices = std::vector<Simplex<object_dim>>;
27
29 template <size_t object_dim>
31
33 template <size_t object_dim>
35
36
43 // ----------------------------------------------------------------------------
44 // Polytope class definition
45 // ----------------------------------------------------------------------------
46
52 template <size_t object_dim>
54 {
55 public:
57 Polytope(size_t index, Simplices<object_dim> simplices);
58
60 Polytope(size_t index, Simplex<object_dim> simplex);
61
63 Polytope(size_t index, VectorRd vertex);
64
66 Polytope();
67
69 ~Polytope();
70
71 // inline size_t dim() const { return object_dim; }
72
73 inline size_t global_index() const { return _index; }
74 inline double diam() const { return _diameter; }
75 inline VectorRd center_mass() const { return _center_mass; }
76 inline double measure() const { return _measure; }
77 inline Simplices<object_dim> get_simplices() const { return _simplices; }
78 inline void set_global_index(const size_t idx) { _index = idx; }
79 inline bool is_boundary() const { return _is_boundary; }
80 inline void set_boundary(bool val) { _is_boundary = val; }
81
82 inline std::vector<Polytope<0> *> get_vertices() const { return _vertices; }
83 inline std::vector<Polytope<1> *> get_edges() const { return _edges; }
84 inline std::vector<Polytope<DIMENSION - 1> *> get_faces() const { return _edges; }
85 inline std::vector<Polytope<DIMENSION> *> get_cells() const { return _cells; }
86
87 inline size_t n_vertices() const { return _vertices.size(); }
88 inline size_t n_edges() const { return _edges.size(); }
89 inline size_t n_faces() const { return _edges.size(); }
90 inline size_t n_cells() const { return _cells.size(); }
91
92 Polytope<0> *vertex(const size_t i) const;
93 Polytope<1> *edge(const size_t i) const;
94 Polytope<DIMENSION - 1> *face(const size_t i) const;
95 Polytope<DIMENSION> *cell(const size_t i) const;
96
101
102 int index_vertex(const Polytope<0> *vertex) const;
103 int index_edge(const Polytope<1> *edge) const;
104 int index_face(const Polytope<DIMENSION - 1> *face) const;
105 int index_cell(const Polytope<DIMENSION> *cell) const;
106
107 VectorRd coords() const;
108
109 VectorRd face_normal(const size_t face_index) const;
110 VectorRd edge_normal(const size_t edge_index) const;
111
112 int face_orientation(const size_t face_index) const;
113 int edge_orientation(const size_t edge_index) const;
114 int vertex_orientation(const size_t vertex_index) const;
115
116 VectorRd normal() const;
117 VectorRd tangent() const;
118
120
121 void plot_simplices(std::ofstream *out) const;
122 void plot(std::ofstream *out) const;
123
124 private:
125 size_t _index;
126 VectorRd _center_mass;
127 double _measure;
128 double _diameter;
129 bool _is_boundary;
130 Simplices<object_dim> _simplices;
131 VectorRd _normal; // uninitialised unless object_dim == DIMENSION - 1 (face)
132 VectorRd _tangent; // uninitialised unless object_dim == 1 (edge)
133 std::vector<int> _face_directions; // empty unless object_dim == DIMENSION (cell)
134
135 std::vector<Polytope<0> *> _vertices;
136 std::vector<Polytope<1> *> _edges;
137 // std::vector<Polytope<DIMENSION - 1>*> _faces;
138 std::vector<Polytope<DIMENSION> *> _cells;
139 };
140
143
146
148 using Face = Polytope<DIMENSION - 1>;
149
152
154
155 // -----------------------------------------------------------------
156 // ----------- Implementation of templated functions ---------------
157 // -----------------------------------------------------------------
158
159 template <size_t object_dim>
161 {
162 VectorRd center_mass = VectorRd::Zero();
163
164 for (auto &coord : simplex)
165 {
166 for (size_t i = 0; i < DIMENSION; ++i)
167 {
168 center_mass(i) += coord(i);
169 }
170 }
171 return center_mass / (object_dim + 1);
172 }
173
174 template <size_t object_dim>
176 {
177 Eigen::MatrixXd CM_mat = Eigen::MatrixXd::Zero(object_dim + 2, object_dim + 2);
178 for (size_t i = 0; i < object_dim + 1; ++i)
179 {
180 VectorRd i_coords = simplex[i];
181 for (size_t j = i + 1; j < object_dim + 1; ++j)
182 {
183 VectorRd j_coords = simplex[j];
184 double norm = (j_coords - i_coords).norm();
185 CM_mat(i, j) = norm * norm;
186 CM_mat(j, i) = CM_mat(i, j);
187 }
188 CM_mat(i, object_dim + 1) = 1;
189 CM_mat(object_dim + 1, i) = 1;
190 }
191
192 // Calculate Cayley-Menger determinant
193 double det = CM_mat.determinant();
194
195 double scaling = std::pow(Math::factorial(object_dim), 2) * std::pow(2, object_dim);
196
197 return std::sqrt(std::abs(det / scaling));
198 }
199
200 template <size_t object_dim>
202 : _index(index), _simplices(simplices)
203 {
204 assert(object_dim <= DIMENSION);
205
206 if (object_dim == 0 || object_dim == 1)
207 {
208 assert(simplices.size() == 1);
209 }
210
211 _is_boundary = false; // by default, is_boundary is set to false. If polytope is on boundary, set is_boundary to true upon construction of the mesh.
212
213 _measure = 0.0;
214 _center_mass = VectorRd::Zero();
215 std::vector<VectorRd> vertex_coords;
216 for (auto &simplex : simplices)
217 {
218 // assert(simplex.size() == _dim + 1);
219 double measure_of_simplex = simplex_measure<object_dim>(simplex);
220 _measure += measure_of_simplex;
221 _center_mass += measure_of_simplex * simplex_center_mass<object_dim>(simplex);
222 for (auto &coord : simplex)
223 {
224 if (std::find(vertex_coords.begin(), vertex_coords.end(), coord) == vertex_coords.end())
225 {
226 vertex_coords.push_back(coord); // if coord not already in vertex_coords, add it
227 }
228 }
229 }
230 _center_mass /= _measure;
231
232 _diameter = 0.0;
233 for (auto it = vertex_coords.begin(); it != vertex_coords.end(); ++it)
234 {
235 for (auto jt = it; jt != vertex_coords.end(); ++jt)
236 {
237 _diameter = std::max(_diameter, (*it - *jt).norm());
238 }
239 }
240
241 if (object_dim == DIMENSION - 1) // find the tangent and normal
242 {
243 _tangent = (this->get_simplices()[0][1] - this->get_simplices()[0][0]).normalized();
244 _normal = VectorRd(-_tangent(1), _tangent(0));
245 }
246 }
247
248 template <size_t object_dim>
249 Polytope<object_dim>::Polytope(size_t index, Simplex<object_dim> simplex) // simplex
250 : Polytope(index, Simplices<object_dim>(1, simplex))
251 {
252 }
253
254 template <size_t object_dim>
255 Polytope<object_dim>::Polytope(size_t index, VectorRd vertex) // vertex
256 : Polytope(index, Simplex<object_dim>({vertex}))
257 {
258 assert(object_dim == 0); // must be a zero dimensional object to use vertex constructor
259 }
260
261 template <size_t object_dim>
263
264 template <size_t object_dim>
266
267 template <size_t object_dim>
269 {
270 assert(std::find(_vertices.begin(), _vertices.end(), vertex) == _vertices.end()); // ensure vertex does not already exist in _vertices
271 _vertices.push_back(vertex);
272 }
273
274 template <size_t object_dim>
276 {
277 assert(std::find(_edges.begin(), _edges.end(), edge) == _edges.end());
278 _edges.push_back(edge);
279 }
280
281 template <size_t object_dim>
283 {
284 assert(std::find(_edges.begin(), _edges.end(), face) == _edges.end());
285 _edges.push_back(face);
286 }
287
288 template <size_t object_dim>
290 {
291 assert(std::find(_cells.begin(), _cells.end(), cell) == _cells.end());
292 _cells.push_back(cell);
293 }
294
295 template <size_t object_dim>
297 {
298 assert(i < _vertices.size());
299 return _vertices[i];
300 }
301
302 template <size_t object_dim>
304 {
305 assert(i < _edges.size());
306 return _edges[i];
307 }
308
309 template <size_t object_dim>
311 {
312 assert(i < _edges.size());
313 return _edges[i];
314 }
315
316 template <size_t object_dim>
318 {
319 assert(i < _cells.size());
320 return _cells[i];
321 }
322
323 template <size_t object_dim>
324 void Polytope<object_dim>::construct_face_normals() // not very efficient - probably room for improvement
325 {
326 assert(object_dim == DIMENSION);
327 for (size_t iF = 0; iF < _edges.size(); ++iF)
328 {
329 VectorRd normal = _edges[iF]->normal();
330 Simplex<object_dim - 1> face_simplex = _edges[iF]->get_simplices()[0];
331 VectorRd center = VectorRd::Zero();
332 double count;
333 for (auto &cell_simplex : this->get_simplices())
334 {
335 count = 0;
336 for (size_t i = 0; (i < cell_simplex.size()) && count < 2; ++i)
337 {
338 if (std::find(face_simplex.begin(), face_simplex.end(), cell_simplex[i]) == face_simplex.end()) // requires numerical precision
339 {
340 ++count;
341 }
342 }
343 if (count == 1) // only don't share one coordinate
344 {
345 center = simplex_center_mass<object_dim>(cell_simplex);
346 break;
347 }
348 }
349 assert(count == 1);
350 // _face_directions.push_back(Math::sgn((_faces[iF]->center_mass() - _center_mass).dot(normal))); // star shaped wrt center mass
351 _face_directions.push_back(Math::sgn((_edges[iF]->center_mass() - center).dot(normal)));
352 assert(_face_directions[iF] != 0);
353 }
354 }
355
356 template <size_t object_dim>
357 VectorRd Polytope<object_dim>::face_normal(const size_t face_index) const
358 {
359 assert(object_dim == DIMENSION);
360 assert(face_index < _edges.size());
361 return _face_directions[face_index] * _edges[face_index]->normal();
362 }
363
364 template <size_t object_dim>
365 VectorRd Polytope<object_dim>::edge_normal(const size_t edge_index) const
366 {
367 return this->face_normal(edge_index);
368 }
369
370 template <size_t object_dim>
371 VectorRd Polytope<object_dim>::coords() const // only for vertices
372 {
373 assert(object_dim == 0); // can only return coordinate of a vertex
374 return this->get_simplices()[0][0]; // only has one simplex, with one coordinate
375 }
376
377 template <size_t object_dim>
379 {
380 assert(object_dim == DIMENSION - 1);
381 return _normal;
382 }
383
384 template <size_t object_dim>
386 {
387 assert(object_dim == 1);
388 return _tangent;
389 // return (this->get_vertices()[1]->coords() - this->get_vertices()[0]->coords()).normalized();
390 }
391
392 template <size_t object_dim>
394 {
395 auto itr = std::find(_vertices.begin(), _vertices.end(), vertex);
396 if (itr != _vertices.end())
397 {
398 return itr - _vertices.begin();
399 }
400 else
401 {
402 throw "Vertex not found";
403 }
404 }
405
406 template <size_t object_dim>
408 {
409 auto itr = std::find(_edges.begin(), _edges.end(), edge);
410 if (itr != _edges.end())
411 {
412 return itr - _edges.begin();
413 }
414 else
415 {
416 throw "Edge not found";
417 }
418 }
419
420 template <size_t object_dim>
422 {
423 auto itr = std::find(_edges.begin(), _edges.end(), face);
424 if (itr != _edges.end())
425 {
426 return itr - _edges.begin();
427 }
428 else
429 {
430 throw "Face not found";
431 }
432 }
433
434 template <size_t object_dim>
436 {
437 auto itr = std::find(_cells.begin(), _cells.end(), cell);
438 if (itr != _cells.end())
439 {
440 return itr - _cells.begin();
441 }
442 else
443 {
444 throw "Cell not found";
445 }
446 }
447
448 template <size_t object_dim>
449 int Polytope<object_dim>::face_orientation(const size_t face_index) const
450 {
451 assert(object_dim == DIMENSION);
452 assert(face_index < _edges.size());
453 return _face_directions[face_index];
454 }
455
456 template <size_t object_dim>
457 int Polytope<object_dim>::edge_orientation(const size_t edge_index) const
458 {
459 assert(object_dim == 2);
460 assert(edge_index < _edges.size());
461 return _face_directions[edge_index];
462 }
463
464 template <size_t object_dim>
465 int Polytope<object_dim>::vertex_orientation(const size_t vertex_index) const
466 {
467 assert(object_dim == 1);
468 assert(vertex_index < _vertices.size());
469 return ( (_vertices[vertex_index]->coords()-_center_mass).dot(this->tangent()) > 0 ? 1 : -1);
470 }
471
472 template <size_t object_dim>
473 void Polytope<object_dim>::plot_simplices(std::ofstream *out) const
474 {
475 assert(object_dim > 0);
476 for (auto &simplex : _simplices)
477 {
478 for (size_t i = 0; i < object_dim + 1; ++i)
479 {
480 size_t i_next = (i + 1) % (object_dim + 1);
481 *out << simplex[i](0) << " " << simplex[i](1) << std::endl;
482 *out << simplex[i_next](0) << " " << simplex[i_next](1) << std::endl;
483 *out << std::endl;
484 }
485 }
486 }
487
488 template <size_t object_dim>
489 void Polytope<object_dim>::plot(std::ofstream *out) const
490 {
491 assert(object_dim > 0);
492 for (size_t i = 0; i < _vertices.size(); ++i)
493 {
494 size_t i_next = (i + 1) % _vertices.size();
495 *out << _vertices[i]->coords()(0) << " " << _vertices[i]->coords()(1) << std::endl;
496 *out << _vertices[i_next]->coords()(0) << " " << _vertices[i_next]->coords()(1) << std::endl;
497 *out << std::endl;
498 }
499 }
500
501} // namespace Mesh2D
502
503#endif
A Vertex is a Polytope with object_dim = 0.
Definition Polytope2D.hpp:54
Compute max and min eigenvalues of all matrices for i
Definition compute_eigs.m:5
VectorRd normal() const
Return the normal of a Face.
Definition Polytope2D.hpp:378
double measure() const
Return the Lebesgue measure of the Polytope.
Definition Polytope2D.hpp:76
void construct_face_normals()
Set the directions of the face normals of a cell.
Definition Polytope2D.hpp:324
int index_cell(const Polytope< DIMENSION > *cell) const
Returns the local index of a cell.
Definition Polytope2D.hpp:435
int index_edge(const Polytope< 1 > *edge) const
Returns the local index of an edge.
Definition Polytope2D.hpp:407
void add_edge(Polytope< 1 > *edge)
Add an edge to the Polytope.
Definition Polytope2D.hpp:275
VectorRd center_mass() const
Return the center mass of the Polytope.
Definition Polytope2D.hpp:75
void plot(std::ofstream *out) const
Plot the polytope to out.
Definition Polytope2D.hpp:489
std::vector< Polytope< DIMENSION > * > get_cells() const
Return the cells of the Polytope.
Definition Polytope2D.hpp:85
VectorRd tangent() const
Return the tangent of a Edge.
Definition Polytope2D.hpp:385
void set_global_index(const size_t idx)
Set the global index.
Definition Polytope2D.hpp:78
size_t n_vertices() const
Return the number of vertices of the Polytope.
Definition Polytope2D.hpp:87
void plot_simplices(std::ofstream *out) const
Plot the simplices to out.
Definition Polytope2D.hpp:473
VectorRd face_normal(const size_t face_index) const
Return the outer normal of a Cell towards the Face located at face_index.
Definition Polytope2D.hpp:357
size_t n_edges() const
Return the number of edges of the Polytope.
Definition Polytope2D.hpp:88
int index_face(const Polytope< DIMENSION - 1 > *face) const
Returns the local index of a face.
Definition Polytope2D.hpp:421
void add_vertex(Polytope< 0 > *vertex)
Add a vertex to the Polytope.
Definition Polytope2D.hpp:268
void add_cell(Polytope< DIMENSION > *cell)
Add a cell to the Polytope.
Definition Polytope2D.hpp:289
int index_vertex(const Polytope< 0 > *vertex) const
Returns the local index of a vertex.
Definition Polytope2D.hpp:393
Polytope< DIMENSION > * cell(const size_t i) const
Return the i-th cell of the Polytope.
Definition Polytope2D.hpp:317
int vertex_orientation(const size_t vertex_index) const
Return the orientation of a Vertex.
Definition Polytope2D.hpp:465
std::vector< Polytope< DIMENSION - 1 > * > get_faces() const
Return the faces of the Polytope.
Definition Polytope2D.hpp:84
double diam() const
Return the diameter of the Polytope.
Definition Polytope2D.hpp:74
~Polytope()
Definition Polytope2D.hpp:265
Polytope< DIMENSION - 1 > * face(const size_t i) const
Return the i-th face of the Polytope.
Definition Polytope2D.hpp:310
void add_face(Polytope< DIMENSION - 1 > *face)
Add a face to the Polytope.
Definition Polytope2D.hpp:282
void set_boundary(bool val)
Set the boundary value of the Polytope.
Definition Polytope2D.hpp:80
size_t n_faces() const
Return the number of faces of the Polytope.
Definition Polytope2D.hpp:89
Polytope< 1 > * edge(const size_t i) const
Return the i-th edge of the Polytope.
Definition Polytope2D.hpp:303
std::vector< Polytope< 0 > * > get_vertices() const
Return the vertices of the Polytope.
Definition Polytope2D.hpp:82
bool is_boundary() const
Return true if Polytope is a boundary object, false otherwise.
Definition Polytope2D.hpp:79
VectorRd edge_normal(const size_t edge_index) const
Return the edge normal of a 2D object.
Definition Polytope2D.hpp:365
double simplex_measure(Simplex< object_dim > simplex)
Definition Polytope2D.hpp:175
size_t global_index() const
Return the global index of the Polytope.
Definition Polytope2D.hpp:73
std::vector< Polytope< 1 > * > get_edges() const
Return the edges of the Polytope.
Definition Polytope2D.hpp:83
int face_orientation(const size_t face_index) const
Return the orientation of a Face.
Definition Polytope2D.hpp:449
Polytope()
Destructor.
Definition Polytope2D.hpp:262
Simplices< object_dim > get_simplices() const
Return the simplices making up the Polytope.
Definition Polytope2D.hpp:77
int edge_orientation(const size_t edge_index) const
Return the orientation of a Edge.
Definition Polytope2D.hpp:457
Polytope< 0 > * vertex(const size_t i) const
Return the i-th vertex of the Polytope.
Definition Polytope2D.hpp:296
VectorRd simplex_center_mass(Simplex< object_dim > simplex)
Method to find the Lebesgue measure of an arbitrary simplex in arbitrary space.
Definition Polytope2D.hpp:160
VectorRd coords() const
Return the coordinates of a Vertex.
Definition Polytope2D.hpp:371
size_t n_cells() const
Return the number of cells of the Polytope.
Definition Polytope2D.hpp:90
end Read size then branch according to sparse or dense format count
Definition mmread.m:75
for j
Definition mmread.m:174
const int sgn(T val)
Definition math.hpp:42
const size_t factorial(size_t n)
Definition math.hpp:12
Definition Mesh2D.hpp:7
std::array< VectorRd, object_dim+1 > Simplex
Definition Polytope2D.hpp:23
constexpr int DIMENSION
Definition Polytope2D.hpp:17
std::vector< Simplex< object_dim > > Simplices
Method to find the center mass of an arbitrary simplex in arbitrary space.
Definition Polytope2D.hpp:28
Eigen::Matrix< int, DIMENSION, 1 > VectorZd
Definition Polytope2D.hpp:20
Eigen::Matrix< double, DIMENSION, 1 > VectorRd
Definition Polytope2D.hpp:19